数学分析原理

豆瓣
数学分析原理

登录后可管理标记收藏。

ISBN: 9787111134176
作者: [美] Walter Rudin
译者: 赵慈庚 / 蒋铎
出版社: 机械工业出版社
发行时间: 2004 -1
丛书: 华章数学译丛
装订: 平装
价格: 28.00元
页数: 304

/ 10

2 个评分

评分人数不足
借阅或购买

Principles of Mathematical Analysis

[美] Walter Rudin    译者: 赵慈庚 / 蒋铎

简介

《数学分析原理》是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,该书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。全书涵盖了高等微积分学的丰富内容,精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第三版经过增删与修订,更加符合学生的阅读习惯与思考方式。

contents

前言
第1章 实数系和复数系
导引
有序集

实数域
广义实数系
复数域
欧氏空间
附录
习题
第2章 基础拓扑
有限集、可数集和不可数集
度量空间
紧集
完全集
连通集
习题
第3章 数列与级数
收敛序列
子序列
Cauchy序列
上极限和下极限
一些特殊序列
级数
非负项级数
数e
根值验敛法与比率验敛法
幂级数
分部求和法
绝对收敛
级数的加法和乘法
级数的重排
习题
第4章 连续性
函数的极限
连续函数
连续性与紧性
连续性与连通性
间断
单调函数
无限极限与无穷远点的极限
极限
习题
第5章 微分法
实函数的导数
中值定理
导数的连续性
L’Hospital法则
高阶导数
Taylor定理
向量值函数的微分法
习题
第6章 RIEMANN-STIEL TJES积分
积分的定义和存在性
积分的性质
积分与微分
向量值函数的积分
可求长曲线
习题
第7章 函数序列与函数项级数
主要问题的讨论
一致收敛性
一致收敛性与连续性
一致收敛性与积分
一致收敛性与微分
等度连续的函数族
Stone-Weierstrass 定理
习题
第8章 一些特殊函数
幂级数
指数函数与对数函数
三角函数
复数域的代数完备性
Fourier级数
Γ函数
习题
第9章 多元函数
线性变换
微分法
凝缩原理
反函数定理
隐函数定理
秩定理
行列式
高阶导数
积分的微分法
习题
第10章 微分形式的积分
积分
本原映射
单位的分割
变量代换
微分形式
单形与链
Stokes定理
闭形式与恰当形式
向量分析
习题
第11章 LEBESGUE 理论
集函数
Lebesgue测试的建立
测试空间
可测函数
简单函数
积分
与Riemann积分的比较
复函数的积分
习题
参考书目

其它版本
短评
评论
笔记