Graphical Models for Machine Learning and Digital Communication

豆瓣
Graphical Models for Machine Learning and Digital Communication

登录后可管理标记收藏。

ISBN: 9780262062022
作者: Brednan Jf Frey
出版社: MIT Press
发行时间: 1998 -8
装订: Hardcover
价格: GBP 8.95
页数: 220

/ 10

0 个评分

评分人数不足
借阅或购买

Brednan Jf Frey   

简介

A variety of problems in machine learning and digital communication deal with complex but structured natural or artificial systems. In this book, Brendan Frey uses graphical models as an overarching framework to describe and solve problems of pattern classification, unsupervised learning, data compression, and channel coding. Using probabilistic structures such as Bayesian belief networks and Markov random fields, he is able to describe the relationships between random variables in these systems and to apply graph-based inference techniques to develop new algorithms. Among the algorithms described are the wake-sleep algorithm for unsupervised learning, the iterative turbodecoding algorithm (currently the best error-correcting decoding algorithm), the bits-back coding method, the Markov chain Monte Carlo technique, and variational inference.

短评
评论
笔记