“tag:统计学习”
全部 | 书籍 (113) | 影视 | 播客 | 音乐 | 游戏 | 演出
异类 [图书] 豆瓣 Goodreads
Outliers: The Story of Success
7.3 (43 个评分) 作者: [加拿大] 马尔科姆·格拉德威尔 译者: 季丽娜 中信出版社 2009 - 6
在《异类》一书中,作家格拉德威尔对社会中那些成功人士进行的分析,让读者看到了一连串颇感意外的统计结果:
英超联赛大部分球员都在9月至11月出生;
比尔·盖茨和史蒂夫·乔布斯都出生在1955年;
纽约很多著名律师事务所的开创者竟然都是犹太人后裔,并且他们的祖辈大多是在纽约的服装行业谋生。
为什么对那些成功人士进行的统计结果会这样一致“意外”?这是因为:
英超球员注册时间是9月。在同龄的球员中,9月份出生的人实际上比8月份出生的人几乎大了一岁,一岁的差距对他们的职业生涯有着不可低估的影响;
1955年前后正是计算机革命的时期,如果你出生太早,就无法拥有个人电脑,如果出生太晚,计算机革命的好机会又被别人占去了;
犹太人律师事务所的成长,是因为他们正赶上企业重组的法律诉讼出现革新的时候,而他们移民到美国的祖辈们的经历又让他们出色地掌握了抓住机遇的能力。
因此,那些奇才异类,他们之所以神奇,得感谢机遇的眷顾。不过,除了机遇之外,他们的成功还需要上辈人的文化熏陶:中国人的数学之所以比西方人的数学成绩优秀,得意于中国人根植水稻的勤劳精神和汉字读音的简洁明了。韩国人在20世纪90年代初期较高的飞机失事率,也是因为韩国上下级之间过于严格的等级制度造成的,韩国较为严格的等级制度使得机长的助手发现险情时,无法第一时间向上级明确地汇报。
如果不听听性格比较张扬的格拉德威尔怎么说,绝对不会想到我们对成功的理解还那么原始。正如格拉德威尔在另外一个例子所说的,如果没有机遇和环境的熏陶,即便是世界上智商达到195的人(爱因斯坦的智商是150)也只能做一份年收入6000美元的保安工作。
因此,从《异类》一书中,你能体会到机遇对成功是如此的重要。格拉德威尔为读者指出了成功之路的方向,但怎样把握这份机遇,每个人都需要仔细思考,毕竟,不同人拥有不同的机遇。
还有1个属于同一作品或可能重复的条目,点击显示。
统计学习方法(第2版) [图书] 豆瓣
7.6 (5 个评分) 作者: 李航 清华大学出版社 2019 - 5
统计学习方法即机器学习方法,是计算机及其应用领域的一门重要学科。本书分为监督学 习和无监督学习两篇,全面系统地介绍了统计学习的主要方法。包括感知机、k 近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM 算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和 PageRank 算法等。除有关统计学习、监督学习和无监督学习的概论和总结的四章外,每章介绍一种方法。叙述力求从具体问题或实例入手, 由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。 为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。 本书是统计机器学习及相关课程的教学参考书,适用于高等院校文本数据挖掘、信息检索及自然语言处理等专业的大学生、研究生,也可供从事计算机应用相关专业的研发人员参考。
The Elements of Statistical Learning [图书] 豆瓣 Goodreads
9.8 (9 个评分) 作者: Trevor Hastie / Robert Tibshirani Springer 2009 - 10
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.
An Introduction to Statistical Learning [图书] 豆瓣 Goodreads
9.8 (12 个评分) 作者: Gareth James / Daniela Witten Springer 2013 - 8
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Python深度学习 [图书] 豆瓣 Goodreads
Deep Learning with Python
10.0 (6 个评分) 作者: [美] 弗朗索瓦•肖莱 译者: 张亮 人民邮电出版社 2018 - 8
本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
概率论与数理统计 [图书] 豆瓣 Goodreads
8.9 (11 个评分) 作者: 陈希孺 中国科学技术大学出版社 2009 - 2
本书内容包括初等概率计算、随机变量及其分布、数字特征、多维随机向量、极限定理、统计学基本概念、点估计与区间估计、假设检验、回归相关分析、方差分析等。书中选入了部分在理论和应用上重要,但一般认为超出本课程范围的材料,以备教者和学者选择。本书着重基本概念的阐释,同时在设定的数学程度内,力求做到论述严谨。书中精选了百余道习题,并在书末附有提示与解答。
本书可作为高等学校理工科非数学系的概率统计课程教材,也可供具有相当数学准备(初等微积分及少量矩阵知识)的读者自修之用。
The Book of Why [图书] Goodreads 豆瓣
6.8 (10 个评分) 作者: Judea Pearl / Dana Mackenzie Basic Books 2018 - 5
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence
“Correlation is not causation.” This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality–the study of cause and effect–on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl’s work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
深度学习 [图书] 豆瓣
Deep Learning: Adaptive Computation and Machine Learning series
8.2 (8 个评分) 作者: [美] 伊恩·古德费洛 / [加] 约书亚·本吉奥 译者: 赵申剑 / 黎彧君 人民邮电出版社 2017 - 7
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
Machine Learning [图书] 豆瓣 Goodreads
9.0 (6 个评分) 作者: Kevin P·Murphy The MIT Press 2012 - 9
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Bayesian Reasoning and Machine Learning [图书] 豆瓣 Goodreads
作者: David Barber Cambridge University Press 2011 - 3
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
概率论沉思录 [图书] 豆瓣
作者: 杰恩斯 人民邮电出版社 2009 - 4
《概率论沉思录(英文版)》将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是它阐述了贝叶斯理论的丰富应用,弥补了其他概率和统计教材的不足。全书分为两大部分。第一部分包括10章内容,讲解抽样理论、假设检验、参数估计等概率论的原理及其初等应用;第二部分包括12章内容,讲解概率论的高级应用,如在物理测量、通信理论中的应用。《概率论沉思录(英文版)》还附有大量习题,内容全面,体例完整。
《概率论沉思录(英文版)》内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为高年级本科生和研究生相关课程的教材。
还有1个属于同一作品或可能重复的条目,点击显示。
Probability Theory [图书] 豆瓣 Goodreads
Probability Theory: The Logic of Science
作者: E. T. Jaynes Cambridge University Press 2003 - 6
The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.
Information Theory, Inference and Learning Algorithms [图书] 豆瓣 Goodreads
Information Theory, Inference & Learning Algorithms
10.0 (5 个评分) 作者: David J. C. MacKay Cambridge University Press 2003 - 10
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
大数据 [图书] 豆瓣
6.6 (14 个评分) 作者: 涂子沛 广西师范大学出版社 2012 - 7
公布官员财产美国是怎么做的,美国能让少部人腐败起来吗,美国式上访是怎么回事,凭什么美国矿难那么少,全民医改美国做得到吗,美国总统大选有什么利器才能赢,下一轮全球洗牌我们世界工厂会被淘汰吗……
除了上帝,任何人都必须用数据来说话。
大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明政府、加速企业创新、引领社会变革的利器。现代管理学之父德鲁克有言,预测未来最好的方法,就是去创造未来。而“大数据战略”,则是当下领航全球的先机。
大数据,这一世界大潮的来龙去脉如何?数据技术变革,何以能推动政府信息公开、透明和社会公正?何以促发行政管理和商业管理革新,并创造无限商机?又何以既便利又危及我们每个人的生活?Google、百度之类搜索服务,何以会不再有立足之地?引领世界的数据帝国——美国和西欧,正在如何应对大数据时代?我们中国,又当如何作为?
本书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例——奥巴马建设“前所未有的开放政府”的雄心、公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、Facebook和推特等社交媒体、Web3.0与下一代互联网的未来图景等等,为您一一细解,数据创新给公民、政府、社会带来的种种挑战和变革。
美国是全书主体,但又处处反观中国当下的现实。回望中国,胡适批评“差不多先生”,黄仁宇求索“数目字管理”,作者从太平洋对面看到中美两国的差距,深知中国缺少什么、需要什么,故将十多年观察、思索所得,淘洗成这一本书。
史学大家、匹兹堡大学历史系荣誉讲座教授许倬云,有感于“老大哥”的影子,专门作序:“我们要对涂子沛先生致敬与致谢,因为他为华文世界提出一个重要的话题。”
哈佛大学商学院访问教授、全球顶尖的管理咨询大师达文波特,为中国政经两界提示智库建言:“无论是对中国政府,还是就中国的商业组织而言,《大数据》都是一本重要的书。”
Python数据科学手册 [图书] 豆瓣
Python Data Science Handbook: Essential Tools for Working with Data
作者: Jake VanderPlas 译者: 陶俊杰 / 陈小莉 人民邮电出版社 2018 - 1
本书是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为最重要的机器学习算法提供了高效整洁的Python版实现。
本书适合有编程背景,并打算将开源Python工具用作分析、操作、可视化以及学习数据的数据科学研究人员。
Learning From Data [图书] 豆瓣
10.0 (7 个评分) 作者: Yaser S. Abu-Mostafa / Malik Magdon-Ismail AMLBook 2012 - 3
Machine learning allows computational systems to adaptively improve their performance with experience accumulated from the observed data. Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Statistical Rethinking [图书] 豆瓣
作者: Richard McElreath Chapman and Hall/CRC 2015
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.
The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.
By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.
Introduction to Linear Algebra [图书] 豆瓣 谷歌图书
9.5 (6 个评分) 作者: Gilbert Strang Wellesley-Cambridge Press 2016 - 8
Linear algebra is something all mathematics undergraduates and many other students, in subjects ranging from engineering to economics, have to learn. The fifth edition of this hugely successful textbook retains all the qualities of earlier editions, while at the same time seeing numerous minor improvements and major additions. The latter include: • A new chapter on singular values and singular vectors, including ways to analyze a matrix of data • A revised chapter on computing in linear algebra, with professional-level algorithms and code that can be downloaded for a variety of languages • A new section on linear algebra and cryptography • A new chapter on linear algebra in probability and statistics. A dedicated and active website also offers solutions to exercises as well as new exercises from many different sources (including practice problems, exams, and development of textbook examples), plus codes in MATLAB®, Julia, and Python.
A First Course in Bayesian Statistical Methods [图书] 豆瓣 Goodreads
作者: Peter D. Hoff Springer 2009 - 6
A self-contained introduction to probability, exchangeability and Bayes' rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
登录用户可看到来自其它网站的搜索结果。