因果推断
The Effect 豆瓣
作者: Nick Huntington-Klein Routledge 2021
The Effect: An Introduction to Research Design and Causality is about research design, specifically concerning research that uses observational data to make a causal inference. It is separated into two halves, each with different approaches to that subject. The first half goes through the concepts of causality, with very little in the way of estimation. It introduces the concept of identification thoroughly and clearly and discusses it as a process of trying to isolate variation that has a causal interpretation. Subjects include heavy emphasis on data-generating processes and causal diagrams.
Concepts are demonstrated with a heavy emphasis on graphical intuition and the question of what we do to data. When we “add a control variable” what does that actually do?
Key Features:
• Extensive code examples in R, Stata, and Python
• Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions
• An easy-to-read conversational tone
• Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
2022年2月20日 在读 theeffectbook.net/index.html
因果推断
Field Experiments 豆瓣 Goodreads
所属 作品: Field Experiments
作者: Alan S. Gerber / Donald P. Green W. W. Norton & Company 2012 - 11
A brief, authoritative introduction to field experimentation in the social sciences. Written by two leading experts on experimental methods, this concise text covers the major aspects of experiment design, analysis, and interpretation in clear language. Students learn how to design randomized experiments, analyze the data, and interpret the findings. Beyond the authoritative coverage of the basic methodology, the authors include numerous features to help students achieve a deeper understanding of field experimentation, including rich examples from the social science literature, problem sets and discussions, data sets, and further readings.
Methods Matter 豆瓣
作者: Richard Murnane / John Willett OUP USA 2010 - 9
Educational policy-makers around the world constantly make decisions about how to use scarce resources to improve the education of children. Unfortunately, their decisions are rarely informed by evidence on the consequences of these initiatives in other settings. Nor are decisions typically accompanied by well-formulated plans to evaluate their causal impacts. As a result, knowledge about what works in different situations has been very slow to accumulate.
Over the last several decades, advances in research methodology, administrative record keeping, and statistical software have dramatically increased the potential for researchers to conduct compelling evaluations of the causal impacts of educational interventions, and the number of well-designed studies is growing. Written in clear, concise prose, Methods Matter: Improving Causal Inference in Educational and Social Science Research offers essential guidance for those who evaluate educational policies. Using numerous examples of high-quality studies that have evaluated the causal impacts of important educational interventions, the authors go beyond the simple presentation of new analytical methods to discuss the controversies surrounding each study, and provide heuristic explanations that are also broadly accessible. Murnane and Willett offer strong methodological insights on causal inference, while also examining the consequences of a wide variety of educational policies implemented in the U.S. and abroad. Representing a unique contribution to the literature surrounding educational research, this landmark text will be invaluable for students and researchers in education and public policy, as well as those interested in social science.
Causal Inference in Statistics 豆瓣
所属 作品: Causal Inference in Statistics
作者: Judea Pearl Wiley 2016 - 2
Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use data to answer questions as basic as, “Does this treatment harm or help patients?” But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data.
Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest.
This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Observation and Experiment 豆瓣
所属 作品: Observation and Experiment
作者: Paul Rosenbaum Harvard University Press 2017 - 8
In the daily news and the scientific literature, we are faced with conflicting claims about the effects caused by some treatments, behaviors, and policies. A daily glass of wine prolongs life, or so we are told. Yet we are also told that alcohol can cause life-threatening cancer and that pregnant women should abstain from drinking. Some say that raising the minimum wage decreases inequality while others say it increases unemployment. Investigators once confidently claimed that hormone replacement therapy reduces the risk of heart disease but today investigators confidently claim it raises that risk. How should we study such questions?
Observation and Experiment is an introduction to causal inference from one of the field’s leading scholars. Using minimal mathematics and statistics, Paul Rosenbaum explains key concepts and methods through scientific examples that make complex ideas concrete and abstract principles accessible.
Some causal questions can be studied in randomized trials in which coin flips assign individuals to treatments. But because randomized trials are not always practical or ethical, many causal questions are investigated in nonrandomized observational studies. To illustrate, Rosenbaum draws examples from clinical medicine, economics, public health, epidemiology, clinical psychology, and psychiatry. Readers gain an understanding of the design and interpretation of randomized trials, the ways they differ from observational studies, and the techniques used to remove, investigate, and appraise bias in observational studies. Observation and Experiment is a valuable resource for anyone with a serious interest in the empirical study of human health, behavior, and well-being.