模式識別
A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability) 豆瓣
作者: Luc Devroye / Laszlo Györfi Springer 1996 - 4
A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.
Pattern Theory 豆瓣
作者: Ulf Grenander / Michael Miller Oxford University Press 2007 - 2
Pattern Theory: From Representation to Inference provides a comprehensive and accessible overview of the modern challenges in signal, data and pattern analysis in speech recognition, computational linguistics, image analysis and computer vision. Aimed at graduate students in biomedical engineering, mathematics, computer science and electrical engineering with a good background in mathematics and probability, the text includes numerous exercises and an extensive bibliography. Additional resources including extended proofs, selected solutions and examples are available on a companion website. The book commences with a short overview of pattern theory and the basics of statistics and estimation theory. Chapters 3-6 discuss the role of representation of patterns via conditioning structure and Chapters 7 and 8 examine the second central component of pattern theory: groups of geometric transformation applied to the representation of geometric objects. Chapter 9 moves into probabilistic structures in the continuum, studying random processes and random fields indexed over subsets of Rn, and Chapters 10, 11 continue with transformations and patterns indexed over the continuum.Chapters 12-14 extend from the pure representations of shapes to the Bayes estimation of shapes and their parametric representation. Chapters 15 and 16 study the estimation of infinite dimensional shape in the newly emergent field of Computational Anatomy, and finally Chapters 17 and 18 look at inference, exploring random sampling approaches for estimation of model order and parametric representing of shapes.
Pattern Theory 豆瓣
作者: David Mumford / Agnès Desolneux A K Peters/CRC Press 2010 - 8
This book is an introduction to pattern theory, the theory behind the task of analyzing types of signals that the real world presents to us. It deals with generating mathematical models of the patterns in those signals and algorithms for analyzing the data based on these models. It exemplifies the view of applied mathematics as starting with a collection of problems from some area of science and then seeking the appropriate mathematics for clarifying the experimental data and the underlying processes of producing these data. An emphasis is placed on finding the mathematical and, where needed, computational tools needed to reach those goals, actively involving the reader in this process. Among other examples and problems, the following areas are treated: music as a realvalued function of continuous time, character recognition, the decomposition of an image into regions with distinct colors and textures, facial recognition, and scaling effects present in natural images caused by their statistical selfsimilarity.