統計學
Schaums Outline of Statistics, Fourth Edition 豆瓣
作者: Murray Spiegel / Larry Stephens McGraw-Hill 2011 - 1
The ideal review for your statistics course More than 40 million students have trusted Schaum's Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum's Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 508 fully worked problems of varying difficulty 694 additional practice problems Complements or supplements the major Statistics textbooks Appropriate for the following courses: Introduction to Statistics, Elementary Statistics, Elementary Statistical Methods, Engineering Statistics, Introduction to Probability and Statistics, Mathematical Statistics, Introduction to Exploratory Data Analysis
Big Data 豆瓣 Goodreads
作者: Viktor Mayer-Schönberger / Kenneth Cukier Eamon Dolan/Houghton Mifflin Harcourt 2013 - 3
National Bestseller
“No other book offers such an accessible and balanced tour of the many benefits and downsides of our continuing infatuation with data.”—Wall Street Journal
“What I’m certain about is that Big Data will be the defining text in the discussion for some time to come.”—Forbes.com It seems like “big data” is in the news every day, with new examples of how powerful algorithms are teasing out the hidden connections between seemingly unrelated things. Whether it is used by the NSA to fight terrorism or by online retailers to predict customers’ buying patterns, big data is a revolution occurring around us, in the process of forever changing economics, science, culture, and the very way we think. But it also poses new threats, from the end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.
Big Data is the first big book about this earthshaking subject, with two leading experts explaining what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards.
Introduction to Probability Models, Tenth Edition 豆瓣
作者: Sheldon M. Ross Academic Press 2009
Ross's classic bestseller, Introduction to Probability Models, has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. It provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. Ancillary list: Instructor's Manual - http://textbooks.elsevier.com/web/manuals.aspx?isbn=9780123743886 Student Solutions Manual - http://www.elsevierdirect.com/product.jsp?isbn=9780123756862#42 Sample Chapter, eBook - http://www.elsevierdirect.com/product.jsp?isbn=9780123756862
New to this Edition: 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, test bank, and companion website Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: Superior writing style Excellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economics
An Introduction to Statistical Learning 豆瓣 Goodreads
9.8 (12 个评分) 作者: Gareth James / Daniela Witten Springer 2013 - 8
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Causality 豆瓣
作者: Judea Pearl Cambridge University Press 2009 - 9
Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and social sciences. Judea Pearl presents and unifies the probabilistic, manipulative, counterfactual, and structural approaches to causation and devises simple mathematical tools for studying the relationships between causal connections and statistical associations. Cited in more than 2,100 scientific publications, it continues to liberate scientists from the traditional molds of statistical thinking. In this revised edition, Judea Pearl elucidates thorny issues, answers readers' questions, and offers a panoramic view of recent advances in this field of research. Causality will be of interest to students and professionals in a wide variety of fields. Dr Judea Pearl has received the 2011 Rumelhart Prize for his leading research in Artificial Intelligence (AI) and systems from The Cognitive Science Society.
Foundations of Utility and Risk Theory with Applications 豆瓣
作者: Stigum, Bernt P.; Wenstop, Fred; Stigum, B. Springer 1983 - 9
2016年3月26日 已读
THE FOUNDATIONS OF THE THEORY OF UTILITY AND RISK
SOHE CENTRAL POINTS
OF THE DISCUSSIONS AT THE OSLO CONFERENCE Summary http://download.springer.com/static/pdf/102/chp%253A10.1007%252F978-94-009-6351-1_1.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-94-009-6351-1_1&token2=exp=1458916685~acl=%2Fstatic%2Fpdf%2F102%2Fchp%25
2016 Maurice_Allais 數學 概率論 歐洲
Bayesian Learning for Neural Networks 豆瓣
作者: Radford M. Neal Springer 1996 - 8
Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.
Deep Learning 豆瓣 Goodreads
Deep Learning
9.7 (7 个评分) 作者: Ian Goodfellow / Yoshua Bengio The MIT Press 2016 - 11
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Causal Inference in Statistics 豆瓣
作者: Judea Pearl Wiley 2016 - 2
Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use data to answer questions as basic as, “Does this treatment harm or help patients?” But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data.
Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest.
This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
The Foundations of Statistics 豆瓣
作者: Leonard J. Savage Dover Publications 1972 - 6
Classic analysis of the subject and the development of personal probability; one of the greatest controversies in modern statistcal thought. New preface and new footnotes to 1954 edition, with a supplementary 180-item annotated bibliography by author. Calculus, probability, statistics and Boolean algebra are recommended.
Probability Theory 豆瓣 Goodreads
Probability Theory: The Logic of Science
作者: E. T. Jaynes Cambridge University Press 2003 - 6
The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.
2015年11月16日 在读
Your act was unwise,’ I exclaimed ‘as you see by the outcome.’ He solemnly eyed me.
‘When choosing the course of my action,’ said he, ‘I had not the outcome to guide me.
2015 Bayesian Edwin_Jaynes 哲學 數學
Probability, Random Variables and Stochastic Processes 豆瓣
作者: Athanasios Papoulis / S. Unnikrishna Pillai McGraw-Hill Europe 2002 - 1
The fourth edition of "Probability, Random Variables and Stochastic Processes" has been updated significantly from the previous edition, and it now includes co-author S. Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material - this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.
The Elements of Statistical Learning 豆瓣 Goodreads
9.8 (9 个评分) 作者: Trevor Hastie / Robert Tibshirani Springer 2009 - 10
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.
Stochastic Processes 豆瓣
作者: Sheldon M. Ross John Wiley & Sons 1996 - 4
A nonmeasure theoretic introduction to stochastic processes. Considers its diverse range of applications and provides readers with probabilistic intuition and insight in thinking about problems. This revised edition contains additional material on compound Poisson random variables including an identity which can be used to efficiently compute moments; a new chapter on Poisson approximations; and coverage of the mean time spent in transient states as well as examples relating to the Gibb's sampler, the Metropolis algorithm and mean cover time in star graphs. Numerous exercises and problems have been added throughout the text.