線性代數
Matrix Computations 豆瓣 Goodreads
Matrix Computations
作者: Gene H. Golub / Charles F. Van Loan Johns Hopkins University Press 1996 - 10
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
Finite-Dimensional Vector Spaces Goodreads 豆瓣
作者: P. R. Halmos Springer 1974 - 7
From the reviews: "The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity...The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." --ZENTRALBLATT FUR MATHEMATIK
Linear Algebra 豆瓣
作者: Charles W. Curtis Springer 1984
This revised and updated fourth edition designed for upper division courses in linear algebra includes the basic results on vector spaces over fields, determinants, the theory of a single linear transformation, and inner product spaces. While it does not presuppose an earlier course, many connections between linear algebra and calculus are worked into the discussion. A special feature is the inclusion of sections devoted to applications of linear algebra, which can either be part of a course, or used for independent study, and new to this edition is a section on analytic methods in matrix theory, with applications to Markov chains in probability theory. Proofs of all the main theorems are included, and are presented on an equal footing with methods for solving numerical problems. Worked examples are integrated into almost every section, to bring out the meaning of the theorems, and illustrate techniques for solving problems. Many numerical exercises make use of all the ideas, and develop computational skills, while exercises of a theoretical nature provide opportunities for students to discover for themselves.