数据挖掘
机器学习实践:测试驱动的开发方法 豆瓣
作者: [美] Matthew Kirk 译者: 段 菲 2015 - 8
本书主要介绍如何将测试驱动开发运用于机器学习算法。每一章都通过示例介绍了机器学习技术能够解决的有关数据的具体问题,以及求解问题和处理数据的方法。具体涵盖了测试驱动的机器学习、机器学习概述、K 近邻分类、朴素贝叶斯分类、隐马尔可夫模型、支持向量机、神经网络、聚类、核岭回归、模型改进与数据提取等内容。通过学习本书,你将能够利用机器学习技术解决涉及数据的现实问题。
机器学习系统设计 豆瓣
Building Machine Learning Systems with Python
作者: [德] Willi Richert / Luis Pedro Coelho 译者: 刘峰 人民邮电出版社 2014 - 7
如今,机器学习正在互联网上下掀起热潮,而Python则是非常适合开发机器学习系统的一门优秀语言。作为动态语言,它支持快速探索和实验,并且针对Python的机器学习算法库的数量也与日俱增。本书最大的特色,就是结合实例分析教会读者如何通过机器学习解决实际问题。
本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。
举几个例子,我们会介绍怎么把StackOverflow的回答按质量高低进行分类,怎么知道某个音乐文件是爵士风格,还是重金属摇滚风格。另外,本书还涵盖了主题建模、购物习性分析及云计算等高级内容。总之,通过学习本书,读者可以掌握构建自己所需系统的各方面知识,并且学以致用,解决自己面临的现实问题。
读者只要具有一定的Python编程经验,能够自己安装和使用开源库,就足够了,即使对机器学习一点了解都没有也没关系。本书不会讲机器学习算法背后的数学。