数据分析
流畅的Python 豆瓣
Fluent Python
9.8 (16 个评分) 作者: [巴西] Luciano Ramalho 译者: 安道 / 吴珂 人民邮电出版社 2017 - 5
【技术大咖推荐】
“很荣幸担任这本优秀图书的技术审校。这本书能帮助很多中级Python程序员掌握这门语言,我也从中学到了相当多的知识!”——Alex Martelli,Python软件基金会成员
“对于想要扩充知识的中级和高级Python程序员来说,这本书是充满了实用编程技巧的宝藏。”——Daniel Greenfeld和Audrey Roy Greenfeld,Two Scoops of Django作者
【本书特色】
本书由奋战在Python开发一线近20年的Luciano Ramalho执笔,Victor Stinner、Alex Martelli等Python大咖担纲技术审稿人,从语言设计层面剖析编程细节,兼顾Python 3和Python 2,告诉你Python中不亲自动手实践就无法理解的语言陷阱成因和解决之道,教你写出风格地道的Python代码。
● Python数据模型:理解为什么特殊方法是对象行为一致的关键。
● 数据结构:充分利用内置类型,理解Unicode文本和字节二象性。
● 把函数视作对象:把Python函数视作一等对象,并了解这一点对流行的设计模式的影响。
● 面向对象习惯用法:通过构建类学习引用、可变性、接口、运算符重载和多重继承。
● 控制流程:学习使用上下文管理器、生成器、协程,以及通过concurrent.futures和asyncio包实现的并发。
● 元编程:理解特性、描述符、类装饰器和元类的工作原理。
【主要内容】
本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。
本书适合中高级Python软件开发人员阅读参考。
【译者简介】
安道
专注于现代计算机技术的自由翻译,译有《Flask Web 开发》《Python 网络编程攻略》《Ruby on Rails 教程》等书。
个人网站:http://about.ac/。
吴珂
现为Airbnb公司软件工程师,所在团队主要负责开发和维护各类可伸缩、高性能服务,并在Airbnb内推广面向服务的系统架构。在分布式系统、云存储服务和跨平台SDK开发,以及大规模数据处理等方面有多年经验。
Python网络数据采集 豆瓣
Web Scraping with Python: Collecting Data from the Modern Web
作者: [美] 米切尔 译者: 陶俊杰 / 陈小莉 人民邮电出版社 2016 - 3
本书采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。
Python for Data Analysis 豆瓣 Goodreads
8.0 (5 个评分) 作者: Wes McKinney O'Reilly Media 2012 - 11
Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing data analysis tools has remained a challenge. This pragmatic guide will help train you in one of the most important tools in the field - Python. Filled with practical case studies, Python for Data Analysis demonstrates the nuts and bolts of manipulating, processing, cleaning, and crunching data with Python. It also serves as a modern introduction to scientific computing in Python for data-intensive applications. Learn about the growing field of data analysis from an expert in the community. Learn everything you need to start doing real data analysis work with Python Get the most complete instruction on the basics of the "modern scientific Python platform" Learn from an insider who builds tools for the scientific stack Get an excellent introduction for novices and a wealth of advanced methods for experienced analysts
2020年9月4日 已读
最终的结果是靠自己做project把书上内容了解的七七八八......
Python 数据分析 方法
An Introduction to Statistical Learning 豆瓣 Goodreads
9.8 (12 个评分) 作者: Gareth James / Daniela Witten Springer 2013 - 8
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.