“tag:时间序列分析”
全部 | 书籍 (6) | 影视 | 播客 | 音乐 | 游戏 | 演出
金融时间序列分析 [图书] 豆瓣 Goodreads
作者: Ruey S.Tsay 译者: 王辉 / 潘家柱 人民邮电出版社 2009 - 6
本书全面阐述了金融时间序列,并主要介绍了金融时间序列理论和方法的当前研究热点和一些最新研究成果,尤其是风险值计算、高频数据分析、随机波动率建模和马尔科夫链蒙特卡罗方法等方面。此外,本书还系统阐述了金融计量经济模型及其在金融时间序列数据和建模中的应用,所有模型和方法的运用均采用实际金融数据,并给出了所用计算机软件的命令。较之第1版,本版主要在新的发展和实证分析方面进行了更新,新增了状态空间模型和Kalman滤波以及S-Plus命令等内容。 本书可作为时间序列分析的教材,也适用于商学、经济学、数学和统计学专业对金融的计量经济学感兴趣的高年级本科生和研究生,同时,也可作为商业、金融、保险等领域专业人士的参考书。
时间序列分析 [图书] 豆瓣
Time Series Analysis
作者: 詹姆斯·D·汉密尔顿 (James D.Hamilton) 译者: 夏晓华 中国人民大学出版社 2015 - 1
近几年间,研究者分析时间序列数据的方式发生了显著的变化。因此,很有必要对这一日益重要的研究领域的新近发展进行综合,并整体呈现出来。作者第一次对时间序列分析的相关进展做出详细、全面的梳理与阐述。这些研究进展包括向量自回归、广义矩估计、单位根的经济与统计结果、非线性时间序列等。另外,作者在本书中还阐述了包括线性表征、自相关、生成函数、谱分析、卡尔曼滤波等动态系统的传统分析工具。这些内容有助于经济理论研究和解释现实世界的数据.
本书将为学生、研究者和预测人员提供对动态系统、计量经济和时间序列分析的独立而明确的全面分析。从最简单的原理出发,作者的清晰表达使得一年级研究生和非专业人士也能理解相关内容的历史进展和新近发展。同时,由于其全面性,使得该书为研究者了解学术前沿提供了宝贵的参考文献。作者一方面通过大量的例子展示理论结果如何运用于实践,另一方面在相关章节后面提供了详细的数学附录。作为为相关领域学生和研究者提供的理论路线图,该书将成为未来若干年相关领域的权威指导书。
应用时间序列分析 [图书] 豆瓣
作者: 何书元 编 2004 - 9
《应用时间序列分析》是高等院校"应用时间序列分析"课程的教材,较系统讲授应用时间序列分析的基本理论、方法以及应用。《应用时间序列分析》以时间序列的线性模型和平稳序列的谱分析为主线,介绍平稳时间序列的基本知识、常用的建模和预测方法,目的是使学生对时间序列的饿应用理论和方法有基本的了解,能够用时间序列的基本方法处理简单的时间序列数据。全书共分九章,内容包括:时间序列的分解、平稳序列、线性平稳序列、ARMA模型、时间序列的预报,加窗谱估计和多维平稳序列介绍。每节配有适量习题和部分计算机作业,可供教师和学生选用。时间序列分析是概率统计学科中应用性教强的一个分支,在金融经济、气象水文、信号处理、机械振动等众多领域有着广泛的应用。
时间序列分析的小波方法 [图书] 豆瓣
作者: 珀西瓦尔 机械工业出版社 2006 - 3
时间序列分析是用随机过程理论和数理统计学的方法,研究随机数据序列所遵从的统计规律,用于解决科研、工程技术、金融及经济等诸多领域内的实际问题。本书是一本由浅入深的小波分析导论,介绍了基于小波的时间序列统计分析。实践中的离散时间技术是本书的论述重点,同时对于理解和实现离散小波变换将涉及的诸多原理与算法也进行了详细的描述。
本书详细地介绍了小波方法在时间序列分析中的应用,图例丰富,语言简明易懂,论述严谨,另外,本书对小波分析所需要的数学知识进行了简洁实用的讲解,还在正文中嵌入了大量的练习,并在附录中给出了这些练习的答案,同时每章另备有适于课堂布置的练习。
本书适合作为高等院校统计学、数学等专业学生的教材,同时也可作为从事相关领域研究的人员的参考书。
Time Series Analysis [图书] 豆瓣
作者: George E. P. Box / Gwilym M. Jenkins Wiley 2008 - 6
A modernized new edition of one of the most trusted books on time series analysis. Since publication of the first edition in 1970, Time Series Analysis has served as one of the most influential and prominent works on the subject. This new edition maintains its balanced presentation of the tools for modeling and analyzing time series and also introduces the latest developments that have occurred n the field over the past decade through applications from areas such as business, finance, and engineering. The Fourth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series as well as their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, modern topics are introduced through the book's new features, which include: A new chapter on multivariate time series analysis, including a discussion of the challenge that arise with their modeling and an outline of the necessary analytical tools New coverage of forecasting in the design of feedback and feedforward control schemes A new chapter on nonlinear and long memory models, which explores additional models for application such as heteroscedastic time series, nonlinear time series models, and models for long memory processes Coverage of structural component models for the modeling, forecasting, and seasonal adjustment of time series A review of the maximum likelihood estimation for ARMA models with missing values Numerous illustrations and detailed appendices supplement the book,while extensive references and discussion questions at the end of each chapter facilitate an in-depth understanding of both time-tested and modern concepts. With its focus on practical, rather than heavily mathematical, techniques, Time Series Analysis , Fourth Edition is the upper-undergraduate and graduate levels. this book is also an invaluable reference for applied statisticians, engineers, and financial analysts.
点击链接进入中文版:
时间序列分析:预测与控制
登录用户可看到来自其它网站的搜索结果。