“tag:神经网络”
深度学习入门 [图书] 豆瓣 Goodreads 谷歌图书
Deep Learning from Scratch
9.3 (19 个评分)
作者:
[ 日] 斋藤康毅
译者:
陆宇杰
人民邮电出版社
2018
- 7
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等“为什么”的问题。
Python深度学习 [图书] 豆瓣 Goodreads
Deep Learning with Python
10.0 (6 个评分)
作者:
[美] 弗朗索瓦•肖莱
译者:
张亮
人民邮电出版社
2018
- 8
本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
还有1个属于同一作品或可能重复的条目,点击显示。
Deep Learning with Python [图书] 豆瓣
作者:
Francois Chollet
Manning Publications
2017
- 10
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
Deep Learning [图书] 豆瓣 Goodreads
Deep Learning
9.7 (7 个评分)
作者:
Ian Goodfellow
/
Yoshua Bengio
…
The MIT Press
2016
- 11
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
还有1个属于同一作品或可能重复的条目,点击显示。
深度学习 [图书] 豆瓣
Deep Learning: Adaptive Computation and Machine Learning series
8.2 (8 个评分)
作者:
[美] 伊恩·古德费洛
/
[加] 约书亚·本吉奥
…
译者:
赵申剑
/
黎彧君
…
人民邮电出版社
2017
- 7
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
Python神经网络编程 [图书] 豆瓣
Make Your Own Neural Network
8.7 (11 个评分)
作者:
[英]塔里克·拉希德(Tariq Rashid)
译者:
林赐
人民邮电出版社
2018
- 4
神经网络是一种模拟人脑的神经网络,以期能够实现类人工智能的机器学习
技术。
本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书
分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使
用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读
者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改善
神经网络的性能,并加深对相关知识的理解。附录分别介绍了所需的微积分知识
和树莓派知识。
本书适合想要从事神经网络研究和探索的读者学习参考,也适合对人工智
能、机器学习和深度学习等相关领域感兴趣的读者阅读。
技术。
本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书
分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使
用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读
者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改善
神经网络的性能,并加深对相关知识的理解。附录分别介绍了所需的微积分知识
和树莓派知识。
本书适合想要从事神经网络研究和探索的读者学习参考,也适合对人工智
能、机器学习和深度学习等相关领域感兴趣的读者阅读。
还有1个属于同一作品或可能重复的条目,点击显示。
Make Your Own Neural Network [图书] 豆瓣
作者:
Tariq Rashid
CreateSpace Independent Publishing Platform
2016
- 3
Hands-On Machine Learning with Scikit-Learn and TensorFlow [图书] 豆瓣
8.4 (5 个评分)
作者:
Aurélien Géron
O'Reilly Media
2017
- 1
还有1个属于同一作品或可能重复的条目,点击显示。
机器学习实战(原书第2版) [图书] 豆瓣
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
作者:
[法] Aurélien Géron
译者:
宋能辉
/
李娴
机械工业出版社
2020
- 10
这本机器学习畅销书基于TensorFlow 2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。
全书分为两部分。第一部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第一部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。
通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以在GitHub上获得。
全书分为两部分。第一部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第一部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。
通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以在GitHub上获得。
Neural Networks and Deep Learning [图书] 豆瓣
Michael Nielsen
作者:
Michael Nielsen
2016
- 1
http://neuralnetworksanddeeplearning.com/
还有1个属于同一作品或可能重复的条目,点击显示。
深入浅出神经网络与深度学习 [图书] 豆瓣 Goodreads
Neural Networks and Deep Learning
作者:
[澳]迈克尔·尼尔森(Michael Nielsen)
译者:
朱小虎
People Post Press
2020
- 8
本书深入讲解神经网络和深度学习技术,侧重于阐释深度学习的核心概念。作者以技术原理为导向,辅以贯穿全书的MNIST手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。学完本书后,读者将能够编写Python代码解决复杂的模式识别问题。
这是一本非常好的深度学习入门书,相信一定会得到大家的喜爱。
——李航
字节跳动科技有限公司人工智能实验室总监、ACL会士、IEEE会士、ACM杰出科学家
这本书从神经网络和深度学习的基本原理入手,详细地解释了神经网络和深度学习的核心概念,兼顾理论和实践,是深入了解神经网络和深度学习的一本好书。
——马少平
清华大学计算机系教授、博士生导师
我从看完第1章开始就被其深入浅出的文字以及清晰的代码实现所吸引。我相信,这本书的正式出版一定会让更多的读者受益。
——车万翔
哈尔滨工业大学计算机科学与技术学院信息检索研究中心教授、博士生导师
这是一本独特且有趣的神经网络入门书,其细致程度基本上做到了手把手教学,非常适合初学者。我期待这本书能照亮更多人的人工智能之路。
——俞扬
南京大学人工智能学院教授、博士生导师
这是一位物理学家写的机器学习书,内容清晰易懂,对神经网络的描述也直观形象,非常适合用来入门神经网络和深度学习。
——邱锡鹏
复旦大学计算机学院教授、博士生导师
这是一本关于神经网络和深度学习的“亲近”易读的书,它将带领你轻松入门人工智能世界。
——张伟楠
上海交通大学计算机科学与工程系副教授、博士生导师
这本不可多得的好书通过丰富的示例和代码实践做到了知行合一。
——王昊奋
同济大学特聘研究员、OpenKG联合创始人
这本量子物理学家笔下的好书以一个个生动的实例驱动你恨不得一口气读完!
——徐涵
华为欧洲研究院高级战略规划经理
这是一本非常好的深度学习入门书,相信一定会得到大家的喜爱。
——李航
字节跳动科技有限公司人工智能实验室总监、ACL会士、IEEE会士、ACM杰出科学家
这本书从神经网络和深度学习的基本原理入手,详细地解释了神经网络和深度学习的核心概念,兼顾理论和实践,是深入了解神经网络和深度学习的一本好书。
——马少平
清华大学计算机系教授、博士生导师
我从看完第1章开始就被其深入浅出的文字以及清晰的代码实现所吸引。我相信,这本书的正式出版一定会让更多的读者受益。
——车万翔
哈尔滨工业大学计算机科学与技术学院信息检索研究中心教授、博士生导师
这是一本独特且有趣的神经网络入门书,其细致程度基本上做到了手把手教学,非常适合初学者。我期待这本书能照亮更多人的人工智能之路。
——俞扬
南京大学人工智能学院教授、博士生导师
这是一位物理学家写的机器学习书,内容清晰易懂,对神经网络的描述也直观形象,非常适合用来入门神经网络和深度学习。
——邱锡鹏
复旦大学计算机学院教授、博士生导师
这是一本关于神经网络和深度学习的“亲近”易读的书,它将带领你轻松入门人工智能世界。
——张伟楠
上海交通大学计算机科学与工程系副教授、博士生导师
这本不可多得的好书通过丰富的示例和代码实践做到了知行合一。
——王昊奋
同济大学特聘研究员、OpenKG联合创始人
这本量子物理学家笔下的好书以一个个生动的实例驱动你恨不得一口气读完!
——徐涵
华为欧洲研究院高级战略规划经理
Neural Network Methods in Natural Language Processing [图书] 豆瓣
作者:
Yoav Goldberg
Morgan & Claypool Publishers
2017
- 4
Theoretical Neuroscience [图书] 豆瓣
作者:
Peter Dayan
/
Laurence F. Abbott
The MIT Press
2005
- 9
Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
Tensorflow:实战Google深度学习框架 [图书] 豆瓣
作者:
郑泽宇
/
顾思宇
电子工业出版社
2017
- 2
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已在谷歌、优步(Uber)、京东、小米等科技公司广泛应用。《Tensorflow实战》为使用TensorFlow深度学习框架的入门参考书,旨在帮助读者以最快、最有效的方式上手TensorFlow和深度学习。书中省略了深度学习繁琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow样例程序介绍如何使用深度学习解决这些问题。《Tensorflow实战》包含了深度学习的入门知识和大量实践经验,是走进这个最新、最火的人工智能领域的首选参考书。