Econometrics
Introduction to Statistics and Econometrics 豆瓣
作者: Takeshi Amemiya Harvard University Press 1994 - 4
This outstanding text by a foremost econometrician combines instruction in probability and statistics with econometrics in a rigorous but relatively nontechnical manner. Unlike many statistics texts, it discusses regression analysis in depth. And unlike many econometrics texts, it offers a thorough treatment of statistics. Although its only mathematical requirement is multivariate calculus, it challenges the student to think deeply about basic concepts. </p>
The coverage of probability and statistics includes best prediction and best linear prediction, the joint distribution of a continuous and discrete random variable, large sample theory, and the properties of the maximum likelihood estimator. Exercises at the end of each chapter reinforce the many illustrative examples and diagrams. Believing that students should acquire the habit of questioning conventional statistical techniques, Takeshi Amemiya discusses the problem of choosing estimators and compares various criteria for ranking them. He also evaluates classical hypothesis testing critically, giving the realistic case of testing a composite null against a composite alternative. He frequently adopts a Bayesian approach because it provides a useful pedagogical framework for discussing many fundamental issues in statistical inference. </p>
Turning to regression, Amemiya presents the classical bivariate model in the conventional summation notation. He follows with a brief introduction to matrix analysis and multiple regression in matrix notation. Finally, he describes various generalizations of the classical regression model and certain other statistical models extensively used in econometrics and other applications in social science. </p>
Econometric Theory and Methods 豆瓣
作者: Russell Davidson / James G. MacKinnon Oxford University Press, USA 2003 - 10
This text provides a unified treatment of modern econometric theory and practical econometric methods. The geometrical approach to least squares is emphasized, as is the method of moments, which is used to motivate a wide variety of estimators and tests. Simulation methods, including the bootstrap, are introduced early and used extensively. The book deals with a large number of modern topics. In addition to bootstrap and Monte Carlo tests, these include sandwich covariance matrix estimators, artificial regressions, estimating functions and the generalized method of moments, indirect inference, and kernel estimation. Every chapter incorporates numerous exercises, some theoretical, some empirical, and many involving simulation. Econometric Theory and Methods is designed for beginning graduate courses. The book is suitable for both one- and two-term courses at the Masters or Ph.D. level. It can also be used in a final-year undergraduate course for students with sufficient backgrounds in mathematics and statistics.