数据挖掘
数据挖掘导论 豆瓣
作者: Pang-Ning Tan / Michael Steinbach 译者: 范明 / 范宏建 人民邮电出版社 2010
本书全面介绍了数据挖掘,涵盖了五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章涵盖基本概念、代表性算法和评估技术,而后一章讨论高级概念和算法。这样读者在透彻地理解数据挖掘的基础的同时,还能够了解更多重要的高级主题。
本书是明尼苏达大学和密歇根州立大学数据挖掘课程的教材,由于独具特色,正式出版之前就已经被斯坦福大学、得克萨斯大学奥斯汀分校等众多名校采用。
本书特色
 与许多其他同类图书不同,本书将重点放在如何用数据挖掘知识解决各种实际问题。
 只要求具备很少的预备知识——不需要数据库背景,只需要很少的统计学或数学背景知识。
 书中包含大量的图表、综合示例和丰富的习题,并且使用示例、关键算法的简洁描述和习题,尽可能直接地聚焦于数据挖掘的主要概念。
 教辅内容极为丰富,包括课程幻灯片、学生课题建议、数据挖掘资源(如数据挖掘算法和数据集)、联机指南(使用实际的数据集和数据分析软件,为本书介绍的部分数据挖掘技术提供例子讲解)。
 向采用本书作为教材的教师提供习题解答。
深入浅出数据分析 豆瓣 Goodreads
Head First Data Analysis
作者: 迈克尔•米尔顿 (Michael Milton) 译者: 李芳 电子工业出版社 2012 - 12
《深入浅出数据分析》以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、最优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
本书构思跌宕起伏,行文妙趣横生,无论读者是职场老手,还是业界新人;无论是字斟句酌,还是信手翻阅,都能跟着文字在职场中走上几回,体味数据分析领域的乐趣与挑战。