计算机科学与技术
数学之美 (第二版) 豆瓣 Goodreads
8.8 (26 个评分) 作者: 吴军 人民邮电出版社 2014 - 11
几年前,“数学之美”系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了“数学之美”,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。
在纸本书的创作中,作者吴军博士几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 —— 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。
第二版增加了针对大数据和机器学习的内容,以便满足人们对当下技术的学习需求;同时,根据专家和读者的反馈更正了一些错漏,并更新了部分内容。
《数学之美》第一版荣获国家图书馆第八届文津图书奖;
入选广电总局“2014年向全国青少年推荐百种优秀图书书目”;
荣获2012-2013年度全行业优秀畅销书;
《浪潮之巅》、《文明之光》作者吴军博士最新力作,李开复作序推荐,Google黑板报百万点击!
新版增加了大数据和机器学习等最新内容,以满足人们对当下技术的学习需求;同时,根据专家和读者的反馈更正了错漏,并更新了部分内容
数字图像处理 豆瓣
作者: [美]冈萨雷斯 译者: 阮秋琦 电子工业出版社 2011 - 6
本书共12章,即绪论、数字图像基础、灰度变换与空间滤波、频率域滤波、图像复原与重建、彩色图像处理、小波和多分辨率处理等。
机器学习 豆瓣
8.4 (37 个评分) 作者: 周志华 清华大学出版社 2016 - 1
机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.
全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑讲授前9章或前10章; 研究生课程则不妨使用全书.
书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程可使用这些习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者启发思考.
本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。