数据挖掘
数据挖掘实用机器学习技术 豆瓣
作者: Ian H.Witten / Eibe Frank 译者: 董琳 / 邱泉 机械工业出版社 2006 - 3
《数据挖掘实用机器学习技术(原书第2版)》介绍数据挖掘的基本理论与实践方法。主要内容包括:各种模型(决策树、关联规则、线性模型、聚类、贝叶斯网以及神经网络)以及在实践中的运用,所存在缺陷的分析。安全地清理数据集、建立以及评估模型的预测质量的方法,并且提供了一个公开的数据挖掘工作平台Weka。Weka系统拥有进行数据挖掘任务的图形用户界面,有助于理解模型,是一个实用并且深受欢迎的工具。
海报:
The Elements of Statistical Learning 豆瓣 Goodreads
9.8 (9 个评分) 作者: Trevor Hastie / Robert Tibshirani Springer 2009 - 10
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.
Python for Data Analysis 豆瓣 Goodreads
8.0 (5 个评分) 作者: Wes McKinney O'Reilly Media 2012 - 11
Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing data analysis tools has remained a challenge. This pragmatic guide will help train you in one of the most important tools in the field - Python. Filled with practical case studies, Python for Data Analysis demonstrates the nuts and bolts of manipulating, processing, cleaning, and crunching data with Python. It also serves as a modern introduction to scientific computing in Python for data-intensive applications. Learn about the growing field of data analysis from an expert in the community. Learn everything you need to start doing real data analysis work with Python Get the most complete instruction on the basics of the "modern scientific Python platform" Learn from an insider who builds tools for the scientific stack Get an excellent introduction for novices and a wealth of advanced methods for experienced analysts
集体智慧编程 豆瓣
Programming Collective Intelligence
8.3 (15 个评分) 作者: Toby Segaran 译者: 莫映 / 王开福 电子工业出版社 2009 - 1
本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。
本书是Web开发者、架构师、应用工程师等的绝佳选择。