Matrix
Matrix Analysis and Applied Linear Algebra 豆瓣
作者: Carl D. Meyer SIAM: Society for Industrial and Applied Mathematics 2001 - 2
Matrix Analysis and Applied Linear Algebra is an honest math text that circumvents the traditional definition-theorem-proof format that has bored students in the past. Meyer uses a fresh approach to introduce a variety of problems and examples ranging from the elementary to the challenging and from simple applications to discovery problems. The focus on applications is a big difference between this book and others. Meyer's book is more rigorous and goes into more depth than some. He includes some of the more contemporary topics of applied linear algebra which are not normally found in undergraduate textbooks. Modern concepts and notation are used to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications. The theoretical developments are always accompanied with examples, which are worked out in detail. Each section ends with a large number of carefully chosen exercises from which the students can gain further insight.
The textbook contains more than 240 examples, 650 exercises, historical notes, and comments on numerical performance and some of the possible pitfalls of algorithms. It comes with a solutions manual that includes complete solutions to all of the exercises. As an added bonus, a CD-ROM is included that contains a searchable copy of the entire textbook and all solutions. Detailed information on topics mentioned in examples, references for additional study, thumbnail sketches and photographs of mathematicians, and a history of linear algebra and computing are also on the CD-ROM, which can be used on all platforms.
Students will love the book's clear presentation and informal writing style. The detailed applications are valuable to them in seeing how linear algebra is applied to real-life situations. One of the most interesting aspects of this book, however, is the inclusion of historical information. These personal insights into some of the greatest mathematicians who developed this subject provide a spark for students and make the teaching of this topic more fun.
Matrix Computations 谷歌图书 豆瓣
作者: Gene H. Golub / Charles F. Van Loan Johns Hopkins University Press 2012 - 02
The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on: fast transforms; parallel LU; discrete Poisson solvers; pseudospectra; structured linear equation problems; structured eigenvalue problems; large-scale SVD methods; and, polynomial eigenvalue problems. Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature-everything needed to become a matrix-savvy developer of numerical methods and software.
Optimization Algorithms on Matrix Manifolds 豆瓣
作者: Absil, P. a./ Mahony, Robert/ Sepulchre, Rodolphe Princeton Univ Pr 2007
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction - illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. "Optimization Algorithms on Matrix Manifolds" offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of Algorithms) 豆瓣
作者: Lars Eldén Society for Industrial and Applied Mathematics 2007 - 4
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.
Matrix Algebra 豆瓣
作者: Karim M. Abadir / Jan R. Magnus Cambridge University Press 2005 - 8
Matrix Algebra is the first volume of the Econometric Exercises Series. It contains exercises relating to course material in matrix algebra that students are expected to know while enrolled in an (advanced) undergraduate or a postgraduate course in econometrics or statistics. The book contains a comprehensive collection of exercises, all with full answers. But the book is not just a collection of exercises; in fact, it is a textbook, though one that is organized in a completely different manner than the usual textbook. The volume can be used either as a self-contained course in matrix algebra or as a supplementary text.