“tag:概率统计”
全部 | 书籍 (166) | 影视 | 播客 | 音乐 | 游戏 | 演出
Probabilistic Graphical Models [图书] 豆瓣
作者: Daphne Koller / Nir Friedman The MIT Press 2009 - 7
Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Computer Age Statistical Inference [图书] 豆瓣
作者: Bradley Efron / Trevor Hastie Cambridge University Press 2016 - 7
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Clarifies both traditional methods and current, popular algorithms (e.g. neural nets, random forests)
Written by two world-leading researchers
Addressed to all fields that work with data
普林斯顿概率论读本 [图书] 豆瓣
The Probability Lifesaver:All the Tools You Need to Understand Chance
作者: [美] 史蒂文·J. 米勒 译者: 李馨 人民邮电出版社 2020 - 8
“本书知识面广博,并且用清晰、轻松的语言来阐释高度形式化的问题,仿一位循循善诱的教授在耐心讲述。对于学习传统教材的学生而言,本书是非常好的补充。本书不仅值得在教育界推广,也适合统计学家用于探究他们死记硬背下来的基本定理。”——H. Van Dyke Parunak,Computing Reviews
“正如英文版副书名所说的那样,本书清晰、直观地呈现了‘理解机会所需的全部工具’。对于已经很好地理解了微积分的学生而言,将对概率论的讨论与这些主题背后的微积分知识相结合大有裨益。”——MAA Reviews
“我将本书给所有研究统计学以及对统计学感兴趣的人。”——Singalakha Menziwa,Mathemafrica
“这本书有趣、引人入胜且通俗易懂,价值非凡。它用对话的口吻邀请学生深入探索其中的材料和概念,好像米勒就站在学生面前讲授这些主题,帮助他们思考问题一样。”——John Imbrie,弗吉尼亚大学
对于学生来说,学习概率论及其众多应用、技术和方法似乎非常费力且令人生畏,而这正是本书的用武之地。这本通俗易懂的学习指南旨在用作概率论的独立教材或相关课程的补充材料,可帮助学生轻松地学习概率论知识并取得良好效果。
本书基于史蒂文·J. 米勒在布朗大学、曼荷莲学院和威廉姆斯学院教授的课程而作。米勒通过先修课程材料、各种难度的问题及证明对概率论这一数学领域进行了详细介绍。探索每个主题时,米勒首先引导学生运用直觉,然后才深入技术细节。本书涵盖的主题很广,并且对材料加以重复以强化知识。读完本书,学生不仅能掌握概率论,还能为将来学习其他课程打下基础。
爱上统计学 [图书] 豆瓣
Statistics for People Who (Think They) Hate Statistics
作者: [美] 尼尔·J. 萨尔金德 译者: 史玲玲 重庆大学出版社 2008 - 1
在经过不断地摸索以及少量成功大量失败的尝试之后,我已经学会了以某种方式教授统计学,我和我的许多学生认为这种方式不会让人感到害怕,同时能够传递大量的信息。
通过这本书可以了解基础统计学的范围并学习所有应该掌握的信息,也可以了解整理和分析数据的基本思路和最常用的技术。本书理论部分有一些,但是很少,数学证明或特定数学程式的合理性讨论也很少。
为什么《爱上统计学》这本书不增加更多理论内容?很简单,初学者不需要。这并不是我认为理论不重要,而是在学习的这个阶段,我想提供的是我认为通过一定程度的努力可以理解和掌握的资料,同时又不会让你感到害怕而放弃将来选修更多的课程。我和其他老师都希望你能成功。
因此,如果你想详细了解方差分析中F值的含义,可以从Sage出版社查找其他的好书(我愿意向你推荐书目)。但是如果你想了解统计学为什么以及如何为你所用,这本书很合适。这本书能帮助你理解在专业文章中看到的资料,解释许多统计分析结果的意义,并且能教你运用基本的统计过程。
---
第I部分 耶!我喜欢统计学
1 统计学还是虐待学?由你决定
为什么学习统计学
统计学简史
统计学:是什么(或不是什么)
我在统计学课堂上做什么
使用这本书的十种方式(同时也在学统计学!)
关于那些符号
难度指数
第Ⅱ部分 西格玛·弗洛伊德和描述统计
2 必须完成的功课——计算和理解平均数
计算均值
需要记忆的内容
计算中位数
需要记忆的内容
计算众数
何时用什么
应用计算机并计算描述统计值
3 性别差异——理解变异性
为什么理解变异性很重要
计算极差
计算标准差
需要记忆的内容
计算方差
使用计算机计算变异性量数
4 一幅图真的相当于千言万语
为什么要用图表说明数据
好图表的十个方面(少贪新,多练习)
首先是建立频数分布
图形密度:建立直方图
扁平和细长的频数分布
其他的图表数据的绝妙方法
使用计算机图示数据
5 冰淇淋和犯罪——计算相关系数
相关系数到底是什么
需要记忆的内容
计算简单相关系数
理解相关系数的含义
决定性的努力:相关系数平方
其他重要的相关
使用计算机计算相关系数
第Ⅲ部分 抓住那些有趣又有利的机会
6 你和假设:检验你的问题
也许你想成为一个科学家
零假设
研究假设
好假设的标准是什么
7 你的曲线是正态的吗——概率和概率的重要性
为什么学习概率
正态曲线(或钟型曲线)
我们最中意的标准值:z值
使用计算机计算z值
第Ⅳ部分 显著性差异——使用推论统计
8 显著性的显著——对你我来说意味着什么
显著性的概念
显著性与意义
推论统计介绍
显著性检验介绍
9 两个群体的t检验——不同群体的均值检验
独立样本t检验介绍
计算检验统计量
特殊效果:差异是真实的吗
使用计算机进行t检验
10 两个群体的t检验——两个相关群体的均值检验
……
第V部分 你得了解和记忆的内容
附录A 30分钟SPSS教学
附录B 数据表
附录C 数据集
The Taming of Chance [图书] 豆瓣
作者: Ian Hacking Cambridge University Press 1990 - 11
In this important new study Ian Hacking continues the enquiry into the origins and development of certain characteristic modes of contemporary thought undertaken in such previous works as his best selling Emergence of Probability. Professor Hacking shows how by the late nineteenth century it became possible to think of statistical patterns as explanatory in themselves, and to regard the world as not necessarily deterministic in character. Combining detailed scientific historical research with characteristic philosophic breath and verve, The Taming of Chance brings out the relations among philosophy, the physical sciences, mathematics and the development of social institutions, and provides a unique and authoritative analysis of the "probabilization" of the Western world.
概率论及其应用(第1卷·第3版) [图书] 豆瓣
An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
作者: William Feller 译者: 胡迪鹤 人民邮电出版社 2006 - 5
《概率论及其应用》(第3版)涉及面极广,不仅讨论了概率论在离散空间中的诸多课题,也涉及了概率论在物理学、化学、生物学(特别是遗传学)、博弈论及经济学等方面的应用,主要内容有:样本空间及其上的概率计算,独立随机变量之和的随机起伏,事件的组合及条件概率,离散随机变量及其数字特征,大数定律,离散的马尔可夫过程及其各种重要特征,更新理论等,除正文外,《概率论及其应用》(第3版)还附有六七百道习题和大量的附录。
概率导论 [图书] 豆瓣
Introduction to Probability (2/e)
作者: Dimitri P.Bertsekas / John N.Tsitsiklis 译者: 郑忠国 / 童行伟 人民邮电出版社 2009
《概率导论(第2版)》是在MIT开设概率论入门课程的基础上编写的, 其内容全面, 例题和习题丰富, 结构层次性强, 能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基本知识, 还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、最小二乘估计等高级内容。
《概率导论(第2版)》可作为所有高等院校概率论入门的基础教程, 也可作为有关概率论方面的参考书。
初等概率论(第4版) [图书] 豆瓣
Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance
作者: [美] 钟开莱 世界图书出版公司 2010 - 1
《初等概率论(第4版)(英文版)》是一部介绍概率论及其应用的入门教程。其原始版本面世已经有30余年,但仍然是本科一二年级的经典概率教程。在第4版中增加了两章讲述应用和数学金融。传承前面版本详细、严谨的风格,讲述了有价证券和期货理论的基本知识。书中用最初等的方法讲述了概率测度、随机变量、分布以及期望等基本概念。离散和连续的案例都有所涉及,在讲述后者的时候运用了微积分知识。配以大量的典型例子重点讲述概率推理,集中介绍了组合问题、Poison过程、随机漫步、遗传模型和Markov链。每章末都附有习题及其解答。
概率论基础教程(原书第9版) [图书] 豆瓣
A First Course in Probability,Ninth Edition
作者: (美)Sheldon M. Ross 译者: 童行伟 / 梁宝生 机械工业出版社 2014 - 1
本书是经过锤炼的优秀教材,已在世界范围内畅销三十多年。在美国的概率论教材中,本书占有50%以上的市场,被华盛顿大学、斯坦福大学、普度大学、密歇根大学、约翰霍普金斯大学、得克萨斯大学等众多名校采用。国内很多高校也采用这本书作为教材或参考书,如北京大学、清华大学、华东师范大学、浙江大学、武汉大学、中央财经大学和上海财经大学等。
书中通过大量的例子系统介绍了概率论的基础知识及其广泛应用,内容涉及组合分析、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等。第9版继续对教材进行微调和优化,做了大量的小修改,还增加了有助于建立概率直觉的例子和练习,使得叙述更加清晰。各章末附有大量的练习,还在书末给出自检习题的全部解答。这本极佳的入门教材,尤其适用于统计学、经管类和工程类专业的学生学习概率论知识。
Causal Inference in Statistics [图书] 豆瓣
作者: Judea Pearl Wiley 2016 - 2
Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use data to answer questions as basic as, “Does this treatment harm or help patients?” But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data.
Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest.
This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Probability and Statistics [图书] 豆瓣 Goodreads
Probability and Statistics
作者: Morris H. DeGroot / Mark J. Schervish Pearson 2011 - 1
The revision of this well-respected text presents a balanced approach of the classical and Bayesian methods and now includes a chapter on simulation (including Markov chain Monte Carlo and the Bootstrap), coverage of residual analysis in linear models, and many examples using real data. Calculus is assumed as a prerequisite, and a familiarity with the concepts and elementary properties of vectors and matrices is a plus.
概率论教程 [图书] 豆瓣
A Course in Probability Theory, Revised Edition, Second Edition
作者: Kai Lai Chung 机械工业出版社 2010 - 4
《概率论教程:英文版(第3版)》是一本享誉世界的经典概率论教材,令众多读者受益无穷。自出版以来。已被世界75%以上的大学的数万名学生使用。《概率论教程:英文版(第3版)》内容丰富,逻辑清晰,叙述严谨。不仅可以拓展读者的视野。而且还将为其后续的学习和研究打下坚实基础。此外,《概率论教程:英文版(第3版)》的习题较多,都经过细心的遴选,从易到难,便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。
应用随机过程 [图书] 豆瓣
Introduction to Probability Models
作者: Sheldon M.Ross 译者: 龚光鲁 人民邮电出版社 2007
《应用随机过程概率模型导论》是一部经典的随机过程著作, 叙述深入浅出、涉及面广,主要内容有随机变量、条件概率及条件期望、离散及连续马尔可夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等;也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用,特别是有关随机模拟的内容, 给随机系统运行的模拟计算提供了有力的工具。《应用随机过程概率模型导论》有约700道习题, 其中带星号的习题还提供了解答。
还有1个属于同一作品或可能重复的条目,点击显示。
Introduction to Probability Models, Tenth Edition [图书] 豆瓣
作者: Sheldon M. Ross Academic Press 2009
Ross's classic bestseller, Introduction to Probability Models, has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. It provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. Ancillary list: Instructor's Manual - http://textbooks.elsevier.com/web/manuals.aspx?isbn=9780123743886 Student Solutions Manual - http://www.elsevierdirect.com/product.jsp?isbn=9780123756862#42 Sample Chapter, eBook - http://www.elsevierdirect.com/product.jsp?isbn=9780123756862
New to this Edition: 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, test bank, and companion website Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: Superior writing style Excellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economics
概率的烦恼 [图书] 豆瓣
作者: Han Christin von beayer 译者: 郭武中 / 阮坤明 中信出版社 2018 - 1
因为精确预测以及在科技领域的广泛应用,量子力学被认为是最成功的科学理论之一,但也是最被误解的理论之一。在被创立后的近一个世纪,量子力学仍旧充满了争议。通过量子贝叶斯理论(QBism)解释量子理论中的悖论和谜题,本书为非专业的读者阐述了量子力学深远的含义、如何理解量子力学和量子力学如何与这个世界相互作用。QBism用对概率的全新理解去改造量子力学中的传统特征。贝叶斯概率与标准的“频率概率”不同的是,它是观察者对未来将要发生的一个事件或者一个命题的信任程度的数值测量。相比于频率主义,量子贝叶斯理论的优势在于它能够处理单个事件,它的概率估计可以根据获得的新信息去更新,并且可以包含“频率概率”的结果。但最重要的还是与量子理论相关的奇怪之处——如两个原子可以同时在不同的位置,信号可以传播得比光更快,以及薛定谔的猫可以同时处于死和活的状态的想法。
用直白的语言而不是方程,贝耶尔用一种通俗的方式,揭示了量子力学的意义,发现了认识物理学的新途径。
Probability [图书] 豆瓣
作者: Rick Durrett Cambridge University Press 2010 - 8
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The new edition begins with a short chapter on measure theory to orient readers new to the subject.
The Emergence of Probability [图书] 豆瓣
作者: Ian Hacking Cambridge University Press 2006 - 7
Book Description
Historical records show that there was no real concept of probability in Europe before the mid-seventeenth century, although the use of dice and other randomizing objects was commonplace. Ian Hacking presents a philosophical critique of early ideas about probability, induction, and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth, and seventeenth centuries. The contemporary debates center around figures such as Pascal, Leibniz, and Jacques Bernoulli. Hacking invokes a wider intellectual framework involving the growth of science, economics, and the theology of the period. He argues that the transformations that made it possible for probability concepts to emerge have constrained all subsequent development of probability theory and determine the space within which philosophical debate on the subject is still conducted. First published in 1975, this edition includes a new introduction that contextualizes his book in light of new work and philosophical trends.
机会的数学原理 [图书] 豆瓣
Taking Chances: Winning with Probability
作者: [英] 约翰·黑格 译者: 李大强 吉林人民出版社 2001 - 8
这是一本明知其输而博赢的概率分析。目的是让普通人获得应用概率知识的能力。书中深入探讨了彩票、轮盘赌、补克游戏等以概率为核心的问题,可以当做一本实战指导手册。
统计推断 [图书] 豆瓣
Statistical Inference
作者: George Casella / Roger L.Berger 译者: 张忠占 / 傅莺莺 机械工业出版社 2010 - 1
《统计推断(翻译版·原书第2版)》从概率论的基础开始,通过例子与习题的旁征博引,引进了大量近代统计处理的新技术和一些国内同类教材中不常见而又广为使用的分布。其内容既包括工科概率入门、经典统计和现代统计的基础,又加进了不少近代统计中数据处理的实用方法和思想,例如:Bootstrap再抽样法、刀切(Jackkrlife)估计、EM算法、Logistic回归、稳健(Robest)回归、Markov链、Monte Carlo方法等。它的统计内容与国内流行的教材相比,理论较深,模型较多,案例的涉及面要广,理论的应用面要丰富,统计思想的阐述与算法更为具体。《统计推断(翻译版·原书第2版)》可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
登录用户可看到来自其它网站的搜索结果。