“tag:代数”
全部 | 书籍 (128) | 影视 | 播客 | 音乐 | 游戏 | 演出
代数特征值问题 [图书] 豆瓣
作者: J.H.威尔金森 科学出版社 2006
《代数特征值问题》是一本计算数学名著。作者用摄动理论和向后误差分析方法系统地论述代数特征值问题以及有关的线性代数方程组、多项式零点的各种解法,并对方法的性质作了透彻的分析。《代数特征值问题》的内容为研究代数特征值及有关问题提供了严密的理论基础和强有力的工具。《代数特征值问题》共分九章。第一章叙述矩阵理论,第二、三章介绍摄动理论和向后舍入误差分析方法,第四章分析线性代数方程组解法,第五章讨论Hermite矩阵的特征值问题,第六、七章研究如何把一般矩阵化为压缩型矩阵及压缩型矩阵的特征值的问题,第八章论述LR和QR算法,最后一章讨论各种迭代法。
群表示论 [图书] 豆瓣
作者: 丘维声 高等教育出版社 2011 - 11
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题, 探索如何解决问题, 把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题, 并且在书末附有习题解答。
《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系和物理系教师、科研工作者以及学过高等代数和抽象代数的读者使用参考。
A First Course in Abstract Algebra, 7th Edition [图书] 豆瓣
作者: John B. Fraleigh Addison Wesley 2002 - 11
Considered a classic by many, A First Course in Abstract Algebra, Seventh Edition is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gröbner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra
For all readers interested in abstract algebra.
Algebraic Geometry [图书] 豆瓣
作者: Thomas Garrity / Richard Belshoff Amer Mathematical Society 2013 - 2
Algebraic Geometry has been at the center of much of mathematics for hundreds of years. It is not an easy field to break into, despite its humble beginnings in the study of circles, ellipses, hyperbolas, and parabolas.
This text consists of a series of exercises, plus some background information and explanations, starting with conics and ending with sheaves and cohomology. The first chapter on conics is appropriate for first-year college students (and many high school students). Chapter 2 leads the reader to an understanding of the basics of cubic curves, while Chapter 3 introduces higher degree curves. Both chapters are appropriate for people who have taken multivariable calculus and linear algebra. Chapters 4 and 5 introduce geometric objects of higher dimension than curves. Abstract algebra now plays a critical role, making a first course in abstract algebra necessary from this point on. The last chapter is on sheaves and cohomology, providing a hint of current work in algebraic geometry.
费马大定理 [图书] 豆瓣
作者: 爱德华兹 2011 - 6
《国外数学名著系列79:费马大定理(代数数论的原始导引)(影印版)》介绍了著名的费马大定理的发展,从费马大定理起至Kummer的理论结束,以此介绍代数数论。而一些更基础的理论,如Euler证明x+y=z的不可能性,则以更简单的方式阐述。一些新的理论和工具则通过具体问题加以介绍。这本专著还详细介绍了Kummer理论在二次积分的应用及其与Gauss理论的联系,这部分理论在其他专著中都未曾有过介绍。
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development,beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book。
离散数学教程 [图书] 豆瓣
作者: 耿素云 / 屈婉玲 北京大学出版社 2002 - 6
《离散数学教程》共分五编。第一编为集合论,其中包括集合的基本概念、二元关系、函数、自然数、基数、序数。第二编为图论,其中包括图的基本概念、图的连通性、欧拉图与哈密顿图、树、平面图、图的着色、图的矩阵表示、覆盖集、独立集、匹配、带权图及其实用。第三编为代数结构,其中包括代数系统的基本概念、几个重要的代数系统:半群、群、环、域、格与布尔代数。第四编为组合灵敏学,其中包括组合存在性、组合计数、级合设计与编码以及组合最优化。第五编为数理逻辑,其中包括命题逻辑、一阶谓词逻辑、Her-brand定理和直觉逻辑。
离散数学习题解析 [图书] 豆瓣
作者: 刘田 北京大学 2008 - 1
《高等院校计算机专业及专业基础课系列教材·离散数学习题解析》是北京市精品教材《离散数学教程》的配套学习用书,也是北京大学的国家级精品课程“离散数学”的教学参考书。全书由集合论、图论、代数结构、组合数学、数理逻辑等五个部分组成,与《离散数学教程》的教学安排完全一致。
《高等院校计算机专业及专业基础课系列教材·离散数学习题解析》不仅对《离散数学教程》中主要章节的全部习题给出解答,并对《教程》中的重点章节补充了新的习题。这些补充题基本上选自历年教学中的测验考试题,或者研究生入学考题。
Algebraic Geometry and Statistical Learning Theory [图书] 豆瓣
作者: Sumio Watanabe Cambridge University Press 2009 - 8
Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties.
An Introduction to Tensors and Group Theory for Physicists [图书] 豆瓣
作者: Nadir Jeevanjee Birkhäuser 2015 - 3
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students.
Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques.
Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups.
Reviews of the First Edition
“[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them… From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view…[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems… Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.”
―Physics Today
"Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.”
―MAA Reviews
自守形式与Langlands纲领 [图书] 豆瓣
作者: 季理真 编 高等教育出版社 2009 - 6
《自守形式与Langlands纲领(英文版)》讲述了:The launch of this Advanced Lectures in Mathematics series is aimed at keeping mathematicians informed of the latest developments in mathematics, as well as to aid in the learning of new mathematical topics by students all over the world.Each volume consists of either an expository monograph or a collection of signifi-cant introductions to important topics. This series emphasizes the history and sources of motivation for the topics under discussion, and also gives an overview of the current status of research in each particular field. These volumes are the first source to which people will turn in order to learn new subjects and to dis-cover the latest results of many cutting-edge fields in mathematics.
Noncommutative Geometry [图书] 豆瓣
作者: Alain Connes 译者: Berberian, Sterling K. Academic Press 1995 - 1
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. It includes features such as: first full treatment of the subject and its applications; written by the pioneer of this field; broad applications in mathematics; of interest across most fields; ideal as an introduction and survey; examples treated include: @subbul; the space of Penrose tilings; the space of leaves of a foliation; the space of irreducible unitary representations of a discrete group; the phase space in quantum mechanics; the Brillouin zone in the quantum Hall effect; and a model of space time.
典型群 [图书] 豆瓣
The Classical Groups: Their Invariants and Representations
作者: Hermann Weyl 世界图书出版公司 2011 - 1
本书是《princeton landmarks in mathematics》系列之一,是一部经典的教材。书中讨论了对称,全线性,正交和辛群,以及它们的不同的不变性和表示论,运用代数的基本观点阐释群的不同性质,恰到好处地运用分析和拓扑。书中也包括了矩阵代数,半群和交换子和自旋子,这些对于很好地理解量子力学的群理论结构很有帮助。目次:引入;向量不变量;矩阵代数和群环;对称群和完全线性群;正交群;对称群;特征;不变基本理论;矩阵代数综述;补充。
读者对象:数学专业的本科生,研究生和相关的科研人员。
不等式机器证明与自动发现 [图书] 豆瓣
作者: 杨路 / 夏壁灿 科学出版社 2008 - 1
《不等式机器证明与自动发现》主要介绍作者及其合作者近十年来在不等式机器证明与自动发现方面的工作,兼顾经典结果和方法,全书共分7章,分别介绍和论述多项式的伪除与结式、相对单纯分解、多项式的实根、常系数半代数系统的实解隔离、参系数半代数系统的实解分类、不等式机器证明的降维算法与BOTTEMA程序以及不等式的明证,除第1章及第3章、第7章的部分内容外,余皆作者及合作者的工作,附录介绍了子结式理论和柱形代数分解算法,还包括了对作者自编软件包B01TrEMA的使用说明。
Thirty-three Miniatures [图书] 豆瓣
作者: Jiří Matoušek American Mathematical Socity 2010 - 6
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
范畴论 [图书] 豆瓣
作者: 贺伟 科学出版社 2006 - 7
《范畴论》作者在书中使用的是现代范畴论通用的概念和术语,但是在对一些基本概念和理论的处理过程中,作者尝试使用比较简洁直接的方法,避免烦琐的论述。《范畴论》的前3章是范畴论的基础内容,适合高年级本科生和研究生的教学以及科研人员对范畴论基础知识的需要,第4章可供从事代数拓扑学尤其是同调代数研究的研究生和科研人员学习和参考,第5章既可以为从事代数几何的科研人员参考,同时也可为希望进一步学习Topos理论的读者提供层论方面的预备知识。
登录用户可看到来自其它网站的搜索结果。