概率論
The Theory That Would Not Die 豆瓣
作者: Sharon Bertsch McGrayne Yale University Press 2011 - 5
Drawing on primary source material and interviews with statisticians and other scientists, "The Theory That Would Not Die" is the riveting account of how a seemingly simple theorem ignited one of the greatest scientific controversies of all time. Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years - at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information, even breaking Germany's Enigma code during World War II, and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA decoding to Homeland Security. "The Theory That Would Not Die" is a vivid account of the generations-long dispute over one of the greatest breakthroughs in the history of applied mathematics and statistics.
Computational Statistics 豆瓣
作者: Geof H. Givens / Jennifer A. Hoeting Wiley 2012 - 11
Retaining the general organization and style of its predecessor, this new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing and computational statistics. Approaching the topic in three major parts--optimization, integration, and smoothing--the book includes an overview section in each chapter introduction and step-by-step implementation summaries to accompany the explanations of key methods; expanded coverage of Monte Carlo sampling and MCMC; a chapter on Alternative Viewpoints; a related Web site; new exercises; and more.
2016年3月26日 想读 http://download.springer.com/static/pdf/102/chp%253A10.1007%252F978-94-009-6351-1_1.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-94-009-6351-1_1&token2=exp=1458916685~acl=%2Fstatic%2Fpdf%2F102%2Fchp%25253A10.1007%25252F978-94-009-6351-1_1.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F97
Klaus_Heilig antiBernoullian 德國 數學 概率論
The Subjectivity of Scientists and the Bayesian Approach 豆瓣
作者: S. James Press / Judith M. Tanur Wiley-Interscience 2001 - 4
Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysis Scientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often aided in humanity's greatest scientific achievements. The authors argue that subjectivity has not only played a significant role in the advancement of science, but that science will advance more rapidly if the modern methods of Bayesian statistical analysis replace some of the classical twentieth-century methods that have traditionally been taught. To accomplish this goal, the authors examine the lives and work of history's great scientists and show that even the most successful have sometimes misrepresented findings or been influenced by their own preconceived notions of religion, metaphysics, and the occult, or the personal beliefs of their mentors. Contrary to popular belief, our greatest scientific thinkers approached their data with a combination of subjectivity and empiricism, and thus informally achieved what is more formally accomplished by the modern Bayesian approach to data analysis. Yet we are still taught that science is purely objective. This innovative book dispels that myth using historical accounts and biographical sketches of more than a dozen great scientists, including Aristotle, Galileo Galilei, Johannes Kepler, William Harvey, Sir Isaac Newton, Antoine Levoisier, Alexander von Humboldt, Michael Faraday, Charles Darwin, Louis Pasteur, Gregor Mendel, Sigmund Freud, Marie Curie, Robert Millikan, Albert Einstein, Sir Cyril Burt, and Margaret Mead. Also included is a detailed treatment of the modern Bayesian approach to data analysis. Up-to-date references to the Bayesian theoretical and applied literature, as well as reference lists of the primary sources of the principal works of all the scientists discussed, round out this comprehensive treatment of the subject. Readers will benefit from this cogent and enlightening view of the history of subjectivity in science and the authors' alternative vision of how the Bayesian approach should be used to further the cause of science and learning well into the twenty-first century.
Statistics And Truth 豆瓣
作者: C Radhakrishna Rao Wspc 1997 - 8
This book deals with the philosophical and methodological aspects of information technology and the collection and analysis of data to provide insight into a problem, whether it is scientific research, policy making by government or decision making in our daily lives. The author seeks to dispels the doubts that chance is an expression of our ignorance which makes accurate prediction impossible and illustrates how our thinking has changed with quantification of uncertainty by showing that chance is no longer the obstructor but a way of expressing our knowledge. Indeed, chance can create and help in the investigation of truth. This theory is eloquently demonstrated with numerous examples of applications that statistics is the science, technology and art of extracting information from data and is based on a study of the laws of chance. It shows how statistical ideas played a vital role in scientific and other investigations even before statistics was recognized as a separate discipline, and how statistics is now evolving as a versatile, powerful and inevitable tool in diverse fields of human endeavour such as literature, legal matters, industry, archaeology and medicine. The use of statistics to the layman in improving the quality of life through wise decision-making is emphasized.
Statistical Pattern Recognition 豆瓣
作者: Andrew R. Webb / Keith D. Copsey Wiley 2011 - 11
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples. Statistical Pattern Recognition, 3rd Edition:* Provides a self-contained introduction to statistical pattern recognition.* Includes new material presenting the analysis of complex networks.* Introduces readers to methods for Bayesian density estimation.* Presents descriptions of new applications in biometrics, security, finance and condition monitoring.* Provides descriptions and guidance for implementing techniques, which will be invaluable to software engineers and developers seeking to develop real applications* Describes mathematically the range of statistical pattern recognition techniques.* Presents a variety of exercises including more extensive computer projects. The in-depth technical descriptions make the book suitable for senior undergraduate and graduate students in statistics, computer science and engineering. Statistical Pattern Recognition is also an excellent reference source for technical professionals. Chapters have been arranged to facilitate implementation of the techniques by software engineers and developers in non-statistical engineering fields. www.wiley.com/go/statistical-pattern-recognition
Scientific Explanation and the Causal Structure of the World 豆瓣
作者: Wesley C. Salmon Princeton University Press 1984
The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation - the epistemic, modal, and ontic. He argues that the prevailing view (a version of the epistemic conception) is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. Professor Salmon's theory furnishes a robust argument for scientific realism akin to the argument that convinced twentieth-century physical scientists of the existence of atoms and molecules. To do justice to such notions as irreducibly statistical laws and statistical explanation, he offers a novel account of physical randomness. The transition from the 'reviewed view' of scientific explanation (that explanations are arguments) to the causal/mechanical model requires fundamental rethinking of basic explanatory concepts.
Counterfactuals 豆瓣
作者: David K. Lewis Wiley-Blackwell 2001 - 1
Counterfactuals is David Lewis's forceful presentation of and sustained argument for a particular view about propositions which express contrary-to-fact conditionals, including his famous defense of realism about possible worlds. Since its original publication in 1973, it has become a classic of contemporary philosophy, and is essential reading for anyone interested in the logic and metaphysics of counterfactuals. The book also includes an appendix of related writings by Lewis.
Graphical Models for Machine Learning and Digital Communication 豆瓣
作者: Brednan Jf Frey MIT Press 1998 - 8
A variety of problems in machine learning and digital communication deal with complex but structured natural or artificial systems. In this book, Brendan Frey uses graphical models as an overarching framework to describe and solve problems of pattern classification, unsupervised learning, data compression, and channel coding. Using probabilistic structures such as Bayesian belief networks and Markov random fields, he is able to describe the relationships between random variables in these systems and to apply graph-based inference techniques to develop new algorithms. Among the algorithms described are the wake-sleep algorithm for unsupervised learning, the iterative turbodecoding algorithm (currently the best error-correcting decoding algorithm), the bits-back coding method, the Markov chain Monte Carlo technique, and variational inference.
The History of Econometric Ideas 豆瓣
作者: Mary S. Morgan Cambridge University Press 2008 - 1
The History of Econometric Ideas covers the period from the late nineteenth century to the middle of the twentieth century, illustrating how economists first learned to harness statistical methods to measure and test the "laws" of economics. Though scholarly, Dr. Morgan's book is very accessible; it does not require a high level of prior statistical knowledge, and will be of interest to practicing statisticians and economists.
Multivariate Dependencies 豆瓣
作者: D.R. Cox / N. Wermuth Chapman & Hall/CRC 1996 - 3
Large observational studies involving research questions that require the measurement of several features on each individual arise in many fields including the social and medical sciences. This book sets out both the general concepts and the more technical statistical issues involved in analysis and interpretation. Numerous illustrative examples are described in outline and four studies are discussed in some detail. The use of graphical representations of dependencies and independencies among the features under study is stressed, both to incorporate available knowledge at the planning stage of an analysis and to summarize aspects important for interpretation after detailed statistical analysis is complete. This book is aimed at research workers using statistical methods as well as statisticians involved in empirical research.
Principles of Statistical Inference 豆瓣
作者: D. R. Cox Cambridge University Press 2006 - 8
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
Latent Variable Models 豆瓣
作者: John C. Loehlin / A. Alexander Beaujean Routledge 2017 - 1
Latent Variable Models: An Introduction to Factor, Path, and Structural Equation
Analysis introduces latent variable models by utilizing path diagrams to explain the
relationships in the models. This approach helps less mathematically-inclined readers to grasp the underlying relations among path analysis, factor analysis, and structural equation modeling, and to set up and carry out such analyses. This revised and expanded fifth edition again contains key chapters on path analysis, structural equation models, and exploratory factor analysis. In addition, it contains new material on composite reliability, models with categorical data, the minimum average partial procedure, bi-factor models, and communicating about latent variable models.
The informal writing style and the numerous illustrative examples make the book
accessible to readers of varying backgrounds. Notes at the end of each chapter
expand the discussion and provide additional technical detail and references. Moreover, most chapters contain an extended example in which the authors work through one of the chapter’s examples in detail to aid readers in conducting similar analyses with their own data. The book and accompanying website provide all of the data for the book’s examples as well as syntax from latent variable programs so readers can replicate the analyses. The book can be used with any of a variety of computer programs, but special attention is paid to LISREL and R.
An important resource for advanced students and researchers in numerous disciplines in the behavioral sciences, education, business, and health sciences, Latent Variable Models is a practical and readable reference for those seeking to understand or conduct an analysis using latent variables.
Understanding Uncertainty 豆瓣
作者: Dennis V. Lindley Wiley-Blackwell 2006 - 10
A lively and informal introduction to the role of uncertainty and probability in people's lives from an everyday perspective
From television game shows and gambling techniques to weather forecasting and the financial markets, virtually every aspect of modern life involves situations in which the outcomes are uncertain and of varying qualities. But as noted statistician Dennis Lindley writes in this distinctive text, "We want you to face up to uncertainty, not hide it away under false concepts, but to understand it and, moreover, to use the recent discoveries so that you can act in the face of uncertainty more sensibly than would have been possible without the skill."
Accessibly written at an elementary level, this outstanding text examines uncertainty in various everyday situations and introduces readers to three rules--craftily laid out in the book--that prove uncertainty can be handled with as much confidence as ordinary logic. Combining a concept of utility with probability, the book insightfully demonstrates how uncertainty can be measured and used in everyday life, especially in decision-making and science.
With a focus on understanding and using probability calculations, Understanding Uncertainty demystifies probability and:
* Explains in straightforward detail the logic of uncertainty, its truths, and its falsehoods
* Explores what has been learned in the twentieth century about uncertainty
* Provides a logical, sensible method for acting in the face of uncertainty
* Presents vignettes of great discoveries made in the twentieth century
* Shows readers how to discern if another person--whether a lawyer, politician, scientist, or journalist--is talking sense, posing the right questions, or obtaining sound answers
Requiring only a basic understanding of mathematical concepts and operations, Understanding Uncertainty is useful as a text for all students who have probability or statistics as part of their course, even at the most introductory level.