機器學習
Neural Networks for Pattern Recognition 豆瓣
作者: Christopher M. Bishop Oxford University Press 1996 - 1
This book provides the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions, and discusses the properties and relative merits of the multi-layer perceptron and radial basis function network models. It also motivates the use of various forms of error functions, and reviews the principal algorithms for error function minimization. As well as providing a detailed discussion of learning and generalization in neural networks, the book also covers the important topics of data processing, feature extraction, and prior knowledge. The book concludes with an extensive treatment of Bayesian techniques and their applications to neural networks.
Supervised Sequence Labelling with Recurrent Neural Networks 豆瓣
作者: Graves, Alex Springer 2012 - 2
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools―robust to input noise and distortion, able to exploit long-range contextual information―that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.
The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video.
Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Learning Deep Architectures for AI 豆瓣
作者: Yoshua Bengio
Theoretical results suggest that in order to learn the kind of complicated
functions that can represent high-level abstractions (e.g., in
vision, language, and other AI-level tasks), one may need deep architectures.
Deep architectures are composed of multiple levels of non-linear
operations, such as in neural nets with many hidden layers or in complicated
propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult task, but learning
algorithms such as those for Deep Belief Networks have recently been
proposed to tackle this problem with notable success, beating the stateof-
the-art in certain areas. This monograph discusses the motivations
and principles regarding learning algorithms for deep architectures, in
particular those exploiting as building blocks unsupervised learning of
single-layer models such as Restricted Boltzmann Machines, used to
construct deeper models such as Deep Belief Networks.
Convex Optimization 豆瓣 Goodreads
Convex Optimization
8.0 (5 个评分) 作者: Stephen Boyd / Lieven Vandenberghe Cambridge University Press 2004 - 3
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Introduction to Semi-Supervised Learning 豆瓣
作者: Xiaojin Zhu / Andrew B. Goldberg Morgan and Claypool Publishers 2009 - 6
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook
Probably Approximately Correct 豆瓣 Goodreads
作者: Leslie Valiant Basic Books 2013 - 6
How does life prosper in a complex and erratic world? While we know that nature follows patterns - such as the law of gravity - our everyday lives are beyond what known science can predict. We nevertheless muddle through even in the absence of theories of how to act. But how do we do it? In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is "probably approximately correct" algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant's theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence.
Parallel Distributed Processing - 2 Vol. Set 豆瓣
作者: David E. Rumelhart / James L. McClelland The MIT Press 1987 - 7
What makes people smarter than computers? These volumes by a pioneering neurocomputing group suggest that the answer lies in the massively parallel architecture of the human mind. They describe a new theory of cognition called connectionism that is challenging the idea of symbolic computation that has traditionally been at the center of debate in theoretical discussions about the mind. The authors' theory assumes the mind is composed of a great number of elementary units connected in a neural network. Mental processes are interactions between these units which excite and inhibit each other in parallel rather than sequential operations. In this context, knowledge can no longer be thought of as stored in localized structures; instead, it consists of the connections between pairs of units that are distributed throughout the network. Volume 1 lays the foundations of this exciting theory of parallel distributed processing, while Volume 2 applies it to a number of specific issues in cognitive science and neuroscience, with chapters describing models of aspects of perception, memory, language, and thought. David E. Rumelhart is Professor of Psychology at the University of California, San Diego. James L. McClelland is Professor of Psychology at Carnegie-Mellon University. A Bradford Book.
Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy 豆瓣 Goodreads Sukkertoppen
Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
8.3 (6 个评分) 作者: Cathy O'Neil Crown 2016 - 9 其它标题: Weapons of Math Destruction
We live in the age of the algorithm. Increasingly, the decisions that affect our lives--where we go to school, whether we can get a job or a loan, how much we pay for health insurance--are being made not by humans, but by machines. In theory, this should lead to greater fairness: Everyone is judged according to the same rules.
But as mathematician and data scientist Cathy O'Neil reveals, the mathematical models being used today are unregulated and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination--propping up the lucky, punishing the downtrodden, and undermining our democracy in the process.
Kernel Methods for Pattern Analysis 豆瓣
作者: John Shawe-Taylor / Nello Cristianini Cambridge University Press 2004 - 6
Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Statistical Pattern Recognition 豆瓣
作者: Andrew R. Webb / Keith D. Copsey Wiley 2011 - 11
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples. Statistical Pattern Recognition, 3rd Edition:* Provides a self-contained introduction to statistical pattern recognition.* Includes new material presenting the analysis of complex networks.* Introduces readers to methods for Bayesian density estimation.* Presents descriptions of new applications in biometrics, security, finance and condition monitoring.* Provides descriptions and guidance for implementing techniques, which will be invaluable to software engineers and developers seeking to develop real applications* Describes mathematically the range of statistical pattern recognition techniques.* Presents a variety of exercises including more extensive computer projects. The in-depth technical descriptions make the book suitable for senior undergraduate and graduate students in statistics, computer science and engineering. Statistical Pattern Recognition is also an excellent reference source for technical professionals. Chapters have been arranged to facilitate implementation of the techniques by software engineers and developers in non-statistical engineering fields. www.wiley.com/go/statistical-pattern-recognition