機器學習
Learning From Data 豆瓣
10.0 (7 个评分) 作者: Yaser S. Abu-Mostafa / Malik Magdon-Ismail AMLBook 2012 - 3
Machine learning allows computational systems to adaptively improve their performance with experience accumulated from the observed data. Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
The Computational Brain 豆瓣
作者: Patricia Churchland / Terrence J. Sejnowski The MIT Press 1992 - 6
How do groups of neurons interact to enable the organism to see, decide, and move appropriately? What are the principles whereby networks of neurons represent and compute? These are the central questions probed by The Computational Brain. Churchland and Sejnowski address the foundational ideas of the emerging field of computational neuroscience, examine a diverse range of neural network models, and consider future directions of the field. The Computational Brain is the first unified and broadly accessible book to bring together computational concepts and behavioral data within a neurobiological framework.Computer models constrained by neurobiological data can help reveal how -networks of neurons subserve perception and behavior - bow their physical interactions can yield global results in perception and behavior, and how their physical properties are used to code information and compute solutions. The Computational Brain focuses mainly on three domains: visual perception, learning and memory, and sensorimotor integration. Examples of recent computer models in these domains are discussed in detail, highlighting strengths and weaknesses, and extracting principles applicable to other domains. Churchland and Sejnowski show how both abstract models and neurobiologically realistic models can have useful roles in computational neuroscience, and they predict the coevolution of models and experiments at many levels of organization, from the neuron to the system.The Computational Brain addresses a broad audience: neuroscientists, computer scientists, cognitive scientists, and philosophers. It is written for both the expert and novice. A basic overview of neuroscience and computational theory is provided, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research. Technical terms are clearly explained in the text, and definitions are provided in an extensive glossary. The appendix contains a precis of neurobiological techniques.Patricia S. Churchland is Professor of Philosophy at the University of California, San Diego, Adjunct Professor at the Salk Institute, and a MacArthur Fellow. Terrence J. Sejnowski is Professor of Biology at the University of California, San Diego, Professor at the Salk Institute, where he is Director of the Computational Neurobiology Laboratory, and an Investigator of the Howard Hughes Medical Institute.
Learning in Graphical Models (Adaptive Computation and Machine Learning) 豆瓣
作者: Jordan, Michael I. 编 The MIT Press 1998 - 11
Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering--uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters--Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest.
Parallel Distributed Processing, Vol. 1 豆瓣
作者: David E. Rumelhart / James L. McClelland A Bradford Book 1987 - 7
What makes people smarter than computers? These volumes by a pioneering neurocomputing group suggest that the answer lies in the massively parallel architecture of the human mind. They describe a new theory of cognition called connectionism that is challenging the idea of symbolic computation that has traditionally been at the center of debate in theoretical discussions about the mind. The authors' theory assumes the mind is composed of a great number of elementary units connected in a neural network. Mental processes are interactions between these units which excite and inhibit each other in parallel rather than sequential operations. In this context, knowledge can no longer be thought of as stored in localized structures; instead, it consists of the connections between pairs of units that are distributed throughout the network. Volume 1 lays the foundations of this exciting theory of parallel distributed processing, while Volume 2 applies it to a number of specific issues in cognitive science and neuroscience, with chapters describing models of aspects of perception, memory, language, and thought.
Parallel Distributed Processing, Vol. 2 豆瓣
作者: James L. McClelland / David E. Rumelhart The MIT Press 1987 - 7
What makes people smarter than computers? These volumes by a pioneering neurocomputing group suggest that the answer lies in the massively parallel architecture of the human mind. They describe a new theory of cognition called connectionism that is challenging the idea of symbolic computation that has traditionally been at the center of debate in theoretical discussions about the mind. The authors' theory assumes the mind is composed of a great number of elementary units connected in a neural network. Mental processes are interactions between these units which excite and inhibit each other in parallel rather than sequential operations. In this context, knowledge can no longer be thought of as stored in localized structures; instead, it consists of the connections between pairs of units that are distributed throughout the network. Volume 1 lays the foundations of this exciting theory of parallel distributed processing, while Volume 2 applies it to a number of specific issues in cognitive science and neuroscience, with chapters describing models of aspects of perception, memory, language, and thought.
Categorization and Naming in Children 豆瓣
作者: Ellen M Markman A Bradford Book 1991 - 5
In this landmark work on early conceptual and lexical development, Ellen Markman explores the fascinating problem of how young children succeed at the task of inducing concepts. Backed by extensive experimental results, she challenges the fundamental assumptions of traditional theories of language acquisition and proposes that a set of constraints or principles of induction allows children to efficiently integrate knowledge and to induce information about new examples of familiar categories.Ellen M. Markman is Professor of Psychology at Stanford University.
Spiking Neuron Models 豆瓣
作者: Wulfram Gerstner Cambridge University Press 2002 - 8
Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.
Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) 豆瓣
作者: Ian H. Witten / Eibe Frank Morgan Kaufmann 2016
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projectsPresents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methodsIncludes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interfaceIncludes open-access online courses that introduce practical applications of the material in the book
Principles of Statistical Inference 豆瓣
作者: D. R. Cox Cambridge University Press 2006 - 8
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
The Master Algorithm 豆瓣
作者: Pedro Domingos Basic Books 2015 - 9
A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own
In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
The Nature of Statistical Learning Theory 豆瓣
作者: Vladimir Vapnik Springer 1999 - 11
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.
Automatic Speech Recognition 豆瓣
作者: 俞栋 / 邓力 Springer 2014 - 11
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 豆瓣
作者: Li Deng / Dong Yu Now Publishers Inc 2014 - 6
This book is aimed to provide an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria: 1) expertise or knowledge of the authors; 2) the application areas that have already been transformed by the successful use of deep learning technology, such as speech recognition and computer vision; and 3) the application areas that have the potential to be impacted significantly by deep learning and that have gained concentrated research efforts, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.
In Chapter 1, we provide the background of deep learning, as intrinsically connected to the use of multiple layers of nonlinear transformations to derive features from the sensory signals such as speech and visual images. In the most recent literature, deep learning is embodied also as representation learning, which involves a hierarchy of features or concepts where higher-level representations of them are defined from lower-level ones and where the same lower-level representations help to define higher-level ones. In Chapter 2, a brief historical account of deep learning is presented. In particular, selected chronological development of speech recognition is used to illustrate the recent impact of deep learning that has become a dominant technology in speech recognition industry within only a few years since the start of a collaboration between academic and industrial researchers in applying deep learning to speech recognition. In Chapter 3, a three-way classification scheme for a large body of work in deep learning is developed. We classify a growing number of deep learning techniques into unsupervised, supervised, and hybrid categories, and present qualitative descriptions and a literature survey for each category. From Chapter 4 to Chapter 6, we discuss in detail three popular deep networks and related learning methods, one in each category. Chapter 4 is devoted to deep autoencoders as a prominent example of the unsupervised deep learning techniques. Chapter 5 gives a major example in the hybrid deep network category, which is the discriminative feed-forward neural network for supervised learning with many layers initialized using layer-by-layer generative, unsupervised pre-training. In Chapter 6, deep stacking networks and several of the variants are discussed in detail, which exemplify the discriminative or supervised deep learning techniques in the three-way categorization scheme.
In Chapters 7-11, we select a set of typical and successful applications of deep learning in diverse areas of signal and information processing and of applied artificial intelligence. In Chapter 7, we review the applications of deep learning to speech and audio processing, with emphasis on speech recognition organized according to several prominent themes. In Chapters 8, we present recent results of applying deep learning to language modeling and natural language processing. Chapter 9 is devoted to selected applications of deep learning to information retrieval including Web search. In Chapter 10, we cover selected applications of deep learning to image object recognition in computer vision. Selected applications of deep learning to multi-modal processing and multi-task learning are reviewed in Chapter 11. Finally, an epilogue is given in Chapter 12 to summarize what we presented in earlier chapters and to discuss future challenges and directions.