統計學
Identification of Dynamical Systems 豆瓣
作者: Isermann, Rolf; Munchhof, Marco; Springer 2011
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators, machine tools, industrial robots, pumps, vehicles to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book.
Among others, the book covers the following subjects: determination of the nonparametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Bayesian Data Analysis, Third Edition 豆瓣 Goodreads 谷歌图书
作者: Andrew Gelman / John B. Carlin Chapman and Hall/CRC 2013 - 11
This third edition of a classic textbook presents a comprehensive introduction to Bayesian data analysis. Written for students and researchers alike, the text is written in an easily accessible manner with chapters that contain many exercises as well as detailed worked examples taken from various disciplines. This third edition provides two new chapters on Bayesian nonparametrics and covers computation systems BUGS and R. It also offers enhanced computing advice. The book's website includes solutions to the problems, data sets, software advice, and other ancillary material.
Introduction to Probability and Statistics 豆瓣
作者: J. Susan Milton / Jesse Arnold McGraw-Hill Education 2002 - 11
This well-respected text is designed for the first course in probability and statistics taken by students majoring in Engineering and the Computing Sciences. The prerequisite is one year of calculus. The text offers a balanced presentation of applications and theory. The authors take care to develop the theoretical foundations for the statistical methods presented at a level that is accessible to students with only a calculus background. They explore the practical implications of the formal results to problem-solving so that students gain an understanding of the logic behind the techniques as well as practice in using them. The examples, exercises, and applications were chosen specifically for students in engineering and computer science, and include opportunities for real data analysis.
Causal Inference 豆瓣 谷歌图书
作者: Hernán MA / Robins JM Boca Raton: Chapman & Hall/CRC 2020
Causal inference is a complex scientific task that relies on evidence from multiple sources and a variety of methodological approaches. By providing a cohesive presentation of concepts and methods that are currently scattered across journals in several disciplines, Causal Inference: What If provides an introduction to causal inference for scientists who design studies and analyze data. The book is divided into three parts of increasing difficulty: causal inference without models, causal inference with models, and causal inference from complex longitudinal data.FEATURES:
- Emphasizes taking the causal question seriously enough to articulate it with sufficient precision
- Shows that causal inference from observational data relies on subject-matter knowledge and therefore cannot be reduced to a collection of recipes for data analysis
- Describes causal diagrams, both directed acyclic graphs and single-world intervention graphs
- Explains various data analysis approaches to estimate causal effects from individual-level data, including the g-formula, inverse probability weighting, g-estimation, instrumental variable estimation, outcome regression, and propensity score adjustment
- Includes software and real data examples, as well as 'Fine Points' and 'Technical Points' throughout to elaborate on certain key topicsCausal Inference: What If has been written for all scientists that make causal inferences, including epidemiologists, statisticians, psychologists, economists, sociologists, political scientists, computer scientists, and more. The book is substantially class-tested, as it has been used in dozens of universities to teach courses on causal inference at graduate and advanced undergraduate level.
The Concept of Probability in the Mathematical Representation of Reality 豆瓣
作者: Reichenbach, Hans 译者: Clark Glymour Open Court 2008 - 3
The first English translation of Hans Reichenbach's lucid doctoral thesis sheds new light on how Kant’s Critique of Pure Reason was understood in some quarters at the time. The source of several themes in his still influential The Direction of Time, the thesis shows Reichenbach's early focus on the interdependence of physics, probability, and epistemology.