数学
古今数学思想(二) 豆瓣
8.9 (7 个评分)
作者:
[美国] 莫里斯·克莱因
译者:
朱学贤 等
上海科学技术出版社
2002
- 8
《古今数学思想》(第2册)论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
《古今数学思想》(第2册)的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。
《古今数学思想》(第2册)的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。
泛函分析讲义(上册) 豆瓣
作者:
张恭庆
/
林源渠
北京大学出版社
2001
这是一部泛函分析教材。它系统地介绍线性泛函分析的基础知识。全书共分四章: 度量空间;线性算子与线性泛函;广义函数与Coболев空间;以及紧算子与Fredholm算子。《泛函分析讲义(上)》的主要特点是它侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其它分支的联系。书中包含丰富的例子与应用,对于掌握基础理论有很大帮助。此书适用于理工科大学本科生与研究生阅读,并且可供一般的数学工作者、物理工作者、工程技术人员参考。为便于读者学习,本次重印书末增加了习题补充提示和索引,以供读者参考。
离散数学及其应用(原书第7版) 豆瓣
Discrete Mathematics and Its Applications
作者:
Kenneth H. Rosen
译者:
徐六通
/
杨娟
…
机械工业出版社
2015
- 1
《计算机科学丛书:离散数学及其应用(原书第7版)》是介绍离散数学理论和方法的经典教材,已经成为采用率最高的离散数学教材,被美国众多名校用作教材,获得了极大的成功。中文版也已被国内大学广泛采用为教材。作者参考使用教师和学生的反馈,并结合自身对教育的洞察,对第7版做了大量的改进,使其成为更有效的教学工具。《计算机科学丛书:离散数学及其应用(原书第7版)》可作为1至2个学期的离散数学课入门教材,适用于数学、计算机科学、计算机工程、信息技术等专业的学生。
线性代数应该这样学 豆瓣
Linear Algebra Done Right
作者:
[美] Sheldon Axler
译者:
杜现昆
/
刘大艳
…
人民邮电出版社
2016
- 10
本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与国内通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论. 书中对一些术语、结论、数学家、证明思想和启示等做了注释, 不仅增加了趣味性, 还加强了读者对一些概念和思想方法的理解.
本书起点低, 无需线性代数方面的预备知识即可学习, 非常适合作为教材. 另外, 本书方法新颖, 非常值得相关教师和科研人员参考.
本书起点低, 无需线性代数方面的预备知识即可学习, 非常适合作为教材. 另外, 本书方法新颖, 非常值得相关教师和科研人员参考.
数学天书中的证明(第五版) 豆瓣
Proofs form THE BOOK
作者:
Martin Aigner
译者:
冯荣权
/
宋春伟
…
高等教育出版社
2016
- 3
《数学天书中的证明(第5版) 》介绍了44个著名数学问题的丰富创造性和独具匠心 的证明。其中有些证明不仅想法奇特、构思精巧,作 为一个整体是天衣无缝。难怪西方有些虔诚的数学 家将这类杰作比喻为上帝的创造。这不是一本教科书 ,也不是一本专著,而是一本开阔数学视野和提高数 学修养的著作。希望每一个数学爱好者都会喜欢这本 书,并且从中学到许多东西。
本书的英文原版于1988年出版,随即受到 数学界的广泛好评,并被陆续翻译成为十余种不同的 文字,其中包括法文、德文、意大利文、日文、西班 牙文和俄文等。
本书的英文原版于1988年出版,随即受到 数学界的广泛好评,并被陆续翻译成为十余种不同的 文字,其中包括法文、德文、意大利文、日文、西班 牙文和俄文等。
折纸设计的秘密 折纸模型中的数学世界 豆瓣
作者:
Thomas Hull
机械工业出版社
2017
- 5
素数之恋 豆瓣
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
作者:
(美)约翰·德比希尔
译者:
陈为蓬
上海科技教育出版社
2014
- 11
1859年8月,没什么名气的32岁数学家黎曼向柏林科学院提交了一篇论文,题为“论小于一个给定值 的素数的个数”。在这篇论文的中间部分,黎曼作了一个附带的备注——一个猜测,一个假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日。在经历了150年的认真研究和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立? 已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。 在约翰·德比希尔编著的《素数之恋:黎曼和数学中最大的未解之谜》中,极其明晰的数学阐释文字与行文优雅的传记和历史篇章交替出现,它对一个史诗般的数学之谜作了迷人而流畅的叙述,而这个谜还将继续挑战和刺激着世人。
啊哈,灵机一动 豆瓣
Aha! Insight
9.3 (6 个评分)
作者:
[美] 马丁·伽德纳
译者:
李建臣
/
刘正新
科学出版社
2007
- 8
20世纪科普经典特藏。瞬间闪光的妙想称为“啊哈反应”。《啊哈,灵机一动 (中文版)》精选了貌似复杂,实际若循规蹈矩去做也确实很困难,但要是能放开思路,跳出常规解题的模式,或许能蓦然发现问题的答案何其简单。《啊哈,灵机一动 (中文版)》谈到的奇思妙想,与科学、艺术、商业、政治及其他人类所从事的各项活动的创造力有着密不可分的联系。《啊哈,灵机一动 (中文版)》包括“组合:关于排列的谜题”、“几何:关于图形的谜题”、“数字:关于算术的谜题”、“逻辑:关于推理的谜题”、“程序:关于操作设计的谜题”和“文字:关于字、词、句的谜题”。
拓扑学 豆瓣
Topology
作者:
[美]James R.Munkres
译者:
熊金城
/
吕杰
…
机械工业出版社
2006
- 4
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,最近由原作者进行了全面更新。第一部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。
《拓扑学》(原书第2版)最大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
《拓扑学》(原书第2版)最大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。