日本
日本陆军与中国 豆瓣
作者: [日] 户部良一 译者: 郑羽 社会科学文献出版社 2015 - 10
作为中国问题专家,“支那通”是日本陆军中的一个特殊群体。他们是战前日本对华外交的先锋,对中国革命抱有强烈的共鸣,但后来却推动日本走向了侵华战争,并对中国进行了最激烈的批判。这种转变的根源是什么?在这一过程中,“支那通”们的所思所想和具体作为又是怎样的?本书意在通过对这些问题的探究,寻找日本对华政策失败的原因。
日本陆军史 豆瓣
作者: [日]户部良一 译者: 韦平和 / 孙维珍 社会科学文献出版社 2016 - 10
在明治时期因军纪严明、遵守国际法等而在国际上受到很高的评价日本陆军,却在昭和时期因虐待俘虏、杀害平民等而臭名昭著。曾经走在时代前列的日本陆军为什么会异化成反近代的象征呢?日本防卫大学教授户部良一以“近代化”与“成长”为关键词,力图在历史的连续性中解明这一谜团。
クリストファー男娼窟 豆瓣
作者: 草間弥生 角川書店 1984 - 5
前衛美術家にして、作家・草間弥生が放つ鮮烈な〈魂〉の物語。中上健次・宮本輝・三田誠広らをして絶賛せしめた「クリストファー男娼窟」のほか、「離人カーテンの囚人」「死臭アカシア」を収録。第10回野生時代新人文学賞受賞作。
唐船风说 豆瓣
作者: 孙文 商务印书馆 2011 - 8
该书对清初中日关系史研究的重要史料《华夷变态》进行综合研究的初步尝试。从香港学术史出发,对《华夷变态》村路的2300多件“风说书”进行细致的文献学梳理,试图还原林春胜等参与的情报界系工作和辑录过程。
Affine Differential Geometry 豆瓣
作者: Katsumi Nomizu / Takeshi Sasaki Cambridge University Press 2008 - 6
This is a self-contained and systematic account of affine differential geometry from a contemporary view, not only covering the classical theory, but also introducing more modern developments. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry to the subject.
Machine Learning in Non-Stationary Environments 豆瓣
作者: Sugiyama, Masashi; Kawanabe, Motoaki; 2012 - 4
As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.
北原白秋詩集 豆瓣
作者: 北原 白秋 / 神西 清 新潮社 1950
官能と愉楽と神経のにがき魔睡へと人々をいざなう異国情緒あふれる「邪宗門」など、豊麗な言葉の魔術師北原白秋の代表作を収める。